

Test report: Some properties of lesser known timber species from Suriname

Report code: 17.0431-revised 2 **Date:** October 22nd, 2019

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 2/59

SHR
"Het Cambium"
Nieuwe Kanaal 9b
PO Box 497
6700 AL Wageningen

Tel: + 31 317 467366

If not stated other wise the tests have been performed at this address

E-mail: r.klaassen@shr.nl

This report has 59 pages. It is the property of the principal, who has the right to publish the complete report. Partial publication, even by the principal, is only allowed after written approval of SHR.

SHR is not responsible for information provided by the client that may influence the validity of the results. The information provided by the customer in this report is specified.

Principal:

Stichting Probos Hollandseweg 7G 6700 AG Wageningen

Appendices: 4

Project number: 17.0431

Authors:

Dr. R.K.W.M. Klaassen

J.G.M. Creemers MSc

2nd author

Project Manager

This report replaces report 17.0431-revised, dated August 30th, 2019.

SHR operates according to NEN-EN-ISO/IEC 17025.

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 3/59

Contents

Contents		3
1 Assign	ment	4
2 Execut	tion of the test	4
2.1 Identi	ification and description of the samples	4
2.2 Perio	d of the test	5
2.3 Proce	edure	5
2.4 A	pparatus	7
	s	
٥.	ра	
	amarinde	
-	ya-udu	
	eli	
3.5 Kimbo	oto	21
	ssion	
٥.	ра	
	amarinde	
-	ya-udu	
	eli	
4.5 KIMD	oto	30
5 Conclu	usion	31
Literature		33
Appendix 1	Lot assessment	34
Appendix 2	Samples for durability tests	45
Appendix 3	Data of durability tests	48
Appendix 4	Data of Shrinkage and swelling tests	54

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 4/59

1 Assignment

On September 16th, 2017 the project *Laboratoriumonderzoek t.b.v. Surinaamse Lesser Known Timber Species*, was granted and on March 2nd 2018 a specification was given of the work executed for this project and reported here.

2 Execution of the test

2.1 Identification and description of the samples

On January 25th, 2018, Mr. van Benthem (Probos) and Mr. Klaassen (SHR) inspected the timber just delivered from Suriname on the site of WTP (World Timber Products) at Hardenberg. Eight boards were chosen as material for investigation. Figure 2.1 shows the boules (stickered boards).

Figure 2.1 The stems on the site of WTP

From each stem the middle plank was selected for the lot assessment. Before transportation to SHR, these unedged boards were sawn into separate beams.

At the SHR laboratory, the beams were stored in the laboratory (at 20°C and 65% RH, appr. 2 months) until the lot assessment. During storage some fungal growth was seen and cracks appeared in some of the beams.

The lot assessment was mainly executed on March 23rd 2018.

For determination of the swelling and shrinkage, quarter sawn blocks (10mm thick in axial direction and 20-45mm wide) were made. All samples were numbered in agreement with the code used at the lot assessment. The number of samples used in the test depended on the wood quality. An overview of the samples is given in table 2.1.

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 5/59

Table 2.1 sample overview

Trade name	Code stem	Number of samples
Ingipipa	1.1	12
Bostamarinde	2.1	12
Gindya-udu	4.1 & 6.1	26
Pakoeli	5.1 & 5.2	14
Kimboto	3.1 & 7.1	10

For the durability tests samples were made according to the description of CEN/TS 15083-1 with dimensions $25 \times 15 \times 50$ mm (w x t x l). Sample preparation started with a lath of each of the selected beams, which would deliver enough samples to use at least one sample on each of the required fungi, and two samples to determine moisture content. After conditioning, the laths were first calibrated (to 15x25 mm) and then crosscut to obtain the samples of 50 mm in length.

Untreated pine sapwood (*Pinus sylvestris*) and beech (*Fagus sylvatica*) samples of the same dimensions were prepared as virulence control samples. Wood for these samples was taken from the SHR stock. The virulence control samples are placed on the fungi without the presence of test samples and are used to check the activity of the fungi in the test.

2.2 Period of the test

The tests were conducted between March and November 2018.

2.3 Procedure

The lot assessment (according to SKH Publication 97-04):

On planed, coded samples, the quality of the timber was assessed, the imperfections found in the timber were described and pictures were taken both from normal wood as well as wood with imperfections. A representative sample was chosen for microscopic research. Based on the cross, radial, and tangential thin sections an anatomical description was made. Furthermore representative samples were chosen for making macroscopic pictures of the cross, flat and quarter sawn surfaces. Only the cross section picture was enlarged and an area of 5x5 mm is shown.

Determination of the radial and tangential swelling (according to SKH Publication 97-04):

Of the quarter sawn samples the mass as well as the radial and tangential dimensions were determined. Half of the samples were climatized to the following climates descending in humidity: 94% RH, 81% RH, 65% RH, 50% RH and 30% RH. The other half of the samples were climatized to another climates sequence with humidity ascending: 30% RH, 50% RH, 65% RH, 81% RH and 94% RH. If the mass of the samples did not change in 24 hours, the samples were regarded as climatized. Finally the samples were water saturated by submerging them in water for 24 hours, followed by oven drying for 24 hours at 103±2°C.

After every climatizing step and after water saturating the tangential and radial dimensions and the mass of the samples were determined. After oven drying, the samples were cooled in an desiccator and again the dimensions and mass were determined.

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 6/59

For determination of the thickness swelling and shrinkage the following formulas were used:

$$K_{x-y} = \frac{b_x - b_y}{b_x} * 100\%$$

$$Z_{x-y} = \frac{b_x - b_y}{b_y} * 100\%$$

Where b_x is the tangential or radial dimension at moisture content x and b_y is the tangential or radial dimension at moisture content y. K_{x-y} means the shrinkage from water saturated (x) to a moisture content of y% and Z_{x-y} means the swelling from ovendry (y) to moisture content of x%.

Determination of the durability (SKH Publication 97-04 / CEN/TS 15083-1):

All samples, including virulence samples were conditioned at 20°C, 65% RH to equilibrium. The dry weight of the test samples was determined using the moisture content of 2 samples of each lath. According to the CEN/TS 15083-1 the initial dry weight of the virulence samples was determined using oven drying at 103 °C for 16-24 hours. The conditioned samples were sterilized with ionized radiation.

The samples were placed in culture vessels, which contained sterilised culture medium (agar) which was inoculated with one of the wood destroying Basidiomycetes (Table 2.2). The choice of the test fungi is based on the recommendations from both the SKH Publication 97-04 and CEN/TS 15083-1.

Table 2.2 Fungi used in the test

Fungus	Common name	Type
Coniophora puteana	Cellar (rot) fungus, wet rot fungus	Brown rot
Poria placenta	Pore fungus	Brown rot
Coriolus versicolor	Turkey tail fungus, Shelf fungus, Many zone polypore	White rot
Donkioporia expansa	Oak polypore	White rot

In each culture vessel, two test samples were placed. The culture vessels were then placed in a culture chamber (22°C, 70% RH) for a period of 16 weeks. The virulence control samples were exposed in the same way.

After the exposure period, the samples were taken from the culture vessels and, after removing adhering fungal tissue, they were weighed before and after drying at 103 °C for 16-24 hours.

The mass loss (ML) of each individual sample due to fungal decay was calculated based on the dry weight before and after the test. The moisture content (mc) of the samples was calculated based on the weight before and after drying.

$$ML = \frac{(m_0 - m_t)}{m_0}$$

with:

MLmass loss(%) m_0 dry weight of the sample before the test[g] m_t dry weight of the sample after the test[g]

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 7/59

$$mc = \frac{(m_{tw} - m_t)}{m_t}$$

with:

mcmoisture content(%) m_{tw} wet weight of the sample before oven drying[g] m_t dry weight of the sample after oven drying[g]

Following EN 350:2016 the classification into durability classes would be based on the median percentage of mass loss of the test samples. The criteria of the durability classes as defined in the standard are given in Table 2.3. The fungus resulting in the highest mass loss (in %) determines the durability class.

None off the timber species investigated in this study fulfils the demands with regard to the number of samples required in the standard. Table 2.1 gives an overview of the number of samples used per species. Therefore this durability test can only result in an <u>indication</u> of the durability class.

Table 2.3. Durability classification according to EN 350 for Basidiomycete fungal tests

					-	_
Durability class	Description	Per	cent	age ma	ss los	s (ML)
1	Very durable			ML	<u>≤</u>	5
2	Durable	5	<	ML	\leq	10
3	Moderately durable	10	<	ML	\leq	15
4	Slightly durable	15	<	ML	≤	30
5	Not durable	30	<	ML		

2.4 Apparatus

- Electric wood moisture meter (SHR/107 and SHR/187)
- Analytic balance (SHR/648 and SHR/008)
- Thickness gauge (SHR/007)
- Electric furnace (SHR/038 and SHR/200)

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 8/59

3 Results

In this chapter the results are given of the lot assessment, swelling and shrinkage and the durability test. The results are grouped by wood species.

In general the wood available was of poor quality: of 4 stems it is suspected that they have been too long in the forest after felling, based on the rot, blue stain and bore holes present in the wood. This makes the available test material partly unusable for further research. As the wood was delivered at SHR undried, two months of drying (at 20°C and 65% RH) with some air movement, was too short to reach moisture contents below 20%. The much smaller samples for shrinkage & swelling and durability tests were therefore dried in a climate chamber at 65%RH and 20°C. After they reached their equilibrium moisture content, further investigation was started. As some of the samples needed more time for climatization, the durability test was executed in two parts.

Regarding the durability test, the CEN/TS 15083-1 fungal test requires the determination of the virulence of the fungi. Sufficient virulence is present when the mass loss of the untreated pine sapwood and / or beech test samples is more than the minimum percentage specified in the CEN/TS 15083-1 (column 'ML required' in Table 3.1).

In this test beech virulence samples were used for all fungi according to the CEN/TS 15083-1. For some samples it took a long time to reach their equilibrium moisture content. Therefore the test (charge 1) was started without theses samples and the test (charge 2) with these samples was started several weeks later. For charge 1 virulence samples of softwood and hardwood were included for all fungal species. For charge 2 virulence samples were used as required but as *Poria placenta* has a preference for softwood, we used for this species softwood only. Table 3.1 shows the required mass loss and the mass loss (ML) found for all virulence control specimens in this test. Since the test is executed in two parts there are two columns for ML found.

Table 3.1 Required and found mass loss (ML) of virulence samples for the fungi used in the test

			Viruler	ce control sam	oles
Fungus	Type	Wood species	ML required	ML found	ML found
			(%)	(%) charge 1	(%) charge 2
Coniophora puteana	Brown rot	Pine sapwood	> 30	28.0	34.0
Сопорнога рисеана	Diowillot	Beech	> 30	38.8	41.6
Paria placanta	Brown rot	Pine sapwood	> 20	16.7	17.5
Poria placenta	DIOWITIOL	Beech	no requirement	14.1	-
Coriolus versicolor	White rot	Pine sapwood	no requirement	18.6	-
Condius versicolor	Wille for	Beech	> 20	36.6	31.0
Dankianaria aynanaa	White rot	Pine sapwood	no requirement	15.4	-
Donkioporia expansa	vviiite iot	Beech	no requirement	19.7	23.5

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 9/59

3.1 Ingipipa

Lot assessment

Below a summary of the lot assessment is given (for further details see appendix 1).

Colour: light brown with light streaks.

Sapwood: not clearly demarked: width: 1-10cm

Grain: straight
Interlocked grain: not present
Knots: not present

Checks: some radial checks, increasing towards the pit. Bark pocket over a length of

30 cm.

Decay: mainly in the outer side of the sapwood: white rot; numerous boreholes (in the

sapwood, as well as in the heartwood).

Remark: the decay intensity gives the impression that the stem laid in the forest for a

long time after felling.

Figure 3.1.1 sawn and planed ingipipa

Anatomical description

Hardwood, diffuse porous, vessel distribution diffuse, vessels solitary and in radial groups of 2 (-5), tangential diameter appr. 150 μ m, appr. 5/mm², pits alternate, 6-7 μ m in diameter, vessel-ray pits similar but smaller. Fibres average thick walled, non-septate. Parenchyma in apotracheal 1(-2) wide bands, reticulate, 5-8 cells per strand. Rays (1-)2-3-seriate, homogeneous to heterogeneous with one row of marginal cells.

Density, moisture content, shrinkage and swelling

The density at a climatized moisture content (20°C, 65% RH) is given in table 3.1.1. In table 3.1.2 and 3.1.3 the wood moisture contents at respectively descending and ascending relative humidity are given. In table 3.1.4 and 3.1.5 the shrinkage and swelling values are given. Individual data are given in appendix 4.

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 10/59

Table 3.1.1 Density for moisture content as started at 20°C and 65% RH

N=12	Density [kg/m³]	Moisture content (%)
mean (min-max)	744 (723-781)	14.0 (13.5-14.4)
std	20.6	0.3

Table 3.1.2. The equilibrium moisture content for different relative humidities at desorption. And the moisture content at water saturation

N=6	Wood moisture content (%) at descending relative humidity and water saturation									
	94%	81%	65%	50%	30%	Water saturated				
Mean	21.94	19.07	14.12	11.27	6.82	89.74				
Std	0.36	0.16	0.11	0.11	0.09	3.78				
Min	21.57	18.87	13.96	11.10	6.66	84.87				
Max	22.50	19.31	14.30	11.39	6.90	93.51				

Table 3.1.3. The equilibrium moisture content for different relative humidities at absorption and moisture content at water saturation

N=6	Wood moisture content (%) at ascending relative humidity and water saturation								
	30%	50%	65%	81%	94%	Water saturated			
Mean	7.15	9.66	11.53	15.48	21.03	89.09			
Std	0.13	0.12	0.14	0.17	0.29	5.37			
Min	6.96	9.45	11.34	15.29	20.76	80.27			
Max	7.29	9.76	11.73	15.75	21.56	94.52			

Table 3.1.4. Radial (rad) and tangential (tan) swelling relative to the dimensions of oven dry wood the samples conditioned to 5 different relative humidities and as started ('al')

Swelling	$Z_{0-30\%}$		Z ₀₋₃₀ % Z ₀₋₅₀ %		Z ₀ .	$Z_{0-65\%}$ Z_{0-al}		Z _{0-81%}		$Z_{0-94\%}$		Z_{0-ws}		
N=6	rad	tan	rad	tan	rad	tan	rad	tan	rad	tan	rad	tan	rad	tan
Mean	1.5	2.2	2.2	2.8	2.7	3.6	3.5	4.7	3.8	5.1	5.2	7.2	6.0	8.8
Std	0.1	0.1	0.1	0.3	0.1	0.1	0.1	0.2	0.2	0.2	0.3	0.2	0.4	0.4
Min	1.4	2.1	2.1	2.2	2.6	3.5	3.2	4.4	3.6	4.9	4.9	6.9	5.6	8.3
Max	1.7	2.3	2.3	3.0	2.8	3.7	3.6	4.9	4.0	5.2	5.7	7.5	6.7	9.3

Table 3.1.5. Radial (rad) and tangential (tan) shrinkage for the samples conditioned to 5 different relative humidities and as started ('al') relative to the dimensions of water saturated wood.

Shrinkage	Kws	s-94%	Kws	s-81%	Kws	s-65%	Kw	s-al	Kws	s-50%	Kws	s-30%	Kw	s-0%
N=6	rad	tan	rad	tan	rad	tan	rad	tan	rad	tan	rad	tan	rad	tan
Mean	0.5	1.2	1.1	2.0	2.1	3.6	2.3	3.7	2.9	4.6	4.2	6.2	5.6	8.1
Std	0.1	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.3
Min	0.3	1.0	0.9	1.8	1.9	3.3	1.9	3.3	2.6	4.3	3.8	5.8	5.2	7.7
Max	0.7	1.4	1.3	2.4	2.5	4.0	2.8	4.2	3.3	5.0	4.7	6.6	6.1	8.6

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 11/59

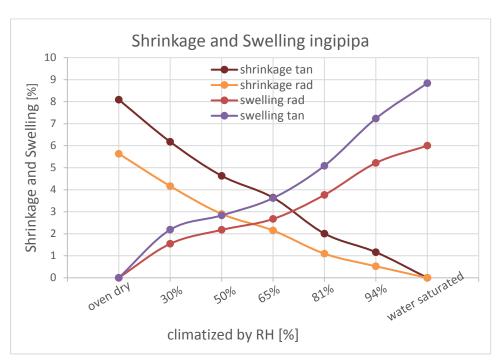


Figure 3.1.2 Shrinkage and swelling of ingipipa climatized at various humidities

The swelling from 50% RH to 95% RH is respectively 3.0% and 4.4% for radial and tangential. The standard deviation is 0.3% and 0.4% respectively.

Durability

The median mass loss of the samples as a result of the exposition to each of the four fungi is given in Table 3.1.6. Also a provisional classification is indicated per fungus based on that single value. All individual sample values are given in Appendix 3.

Table 3.1.6 mass loss and provisional durability class for the different fungi

Fungus	Conio	ohora	Poria pla	conto	Corio	olus	Donkid	poria	
Fullgus	pute	puteana		Cerria	versicolor		expansa		
Wood species	ML (%)	DC	ML (%)	DC	ML (%)	DC	ML (%)	DC	
Ingipipa	-0.1	1	-0.1	1	0.7	1	0.2	1	

In table 3.1.7 the spread of the individual mass losses are shown, together with the indicative durability class for *Coriolus versicolor*, since *Coriolus versicolor* led to the highest mass loss.

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 12/59

Table 3.1.7 Spread (in %) of individual mass loss values (n = 7) over the durability classes (DC) for

Corioiu	Coriolus versicolor								
Group	samı	oles							
DC	[no.]	(%)							
1	4	57							
2	1	14							
3	0	0							
4	2	29							
5	0	0							

3.2 Bostamarinde

Lot assessment

Below a summary of the lot assessment is given (for further details see appendix 1).

Colour: yellow, in a wengé-like pattern (alternating light and dark zones), little pinkish

around the heart.

Sapwood: not clearly demarked, almost no colour difference: width possibly 3-4.5 cm.

locally blue, possibly as reaction to environment

Grain: straight

Interlocked grain: distinct and regular

Knots: in the heart plank two larger knots (Ø 3cm, with bark pocket one knot with

some brown rot) also some pin knots

Checks: Only present in the heart plank

Decay: white rot in outer side and locally some deep worm holes

Remarks: some thin canals with extractives present, clear reaction wood; the decay

intensity gives the impression that the stem, laid for longer time in the forest

after felling

Figure 3.2.1 Bostamarinde heartwood, reaction wood and sapwood

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 13/59

Anatomical description:

Hardwood, diffuse porous, vessel distribution diffuse, solitary and in radial groups of 2-3, tangential diameter 250-350 μ m, appr. 10/mm², pits alternate, 4-5 μ m in diameter, vessel-rays pits similar but smaller. Fibres average thick walled, non-septate. Parenchyma wavy wide bands (>50% of total structure), 2-4 cells per strand. Rays 2-seriate, homogeneous to heterogeneous with one row of marginal cells.

Density, moisture content, shrinkage and swelling

The density at a moisture content (20°C, 65% RH) is given in table 3.2.1. In table 3.2.2 and 3.2.3 the wood moisture contents at respectively descending and ascending relative humidity are given. In table 3.2.4 and 3.2.5 the shrinkage and swelling values are given. Individual data are given in appendix 4.

Table 3.2.1. Density for moisture content as started at 20°C and 65% RH

N=12	density [kg/m³]	Moisture content (%)
Mean (min-max)	573 (457-697)	15.55 (14.15-18.11)
Std	102.3	1.3

Table 3.2.2. The equilibrium moisture content for different relative humidities at desorption. And the moisture content at water saturation

N=6	Wood moisture content (%) at descending relative humidity and water saturation											
	94%	81%	65%	50%	30%	Water saturated						
Mean	24.3	20.5	15.4	12.6	8.8	126.9						
Std	1.3	1.0	1.2	1.2	1.2	45.3						
Min	22.7	19.5	14.1	11.3	7.5	80.8						
Max	26.3	22.2	17.1	14.5	10.6	175						

Table 3.2.3. The equilibrium moisture content for different relative humidities at absorption and moisture content at water saturation

N=6	Wo	od moistur	e content (%	(a) at ascend	ing relative hun	nidity and water saturation
	30%	50%	65%	81%	94%	Water saturated
Mean	9.3	11.7	13.7	17.8	24.2	124.5
Std	1.5	1.5	1.5	1.6	1.8	45.1
Min	7.7	10.1	12.1	16.1	22.3	80.1
Max	11.5	14.1	16.1	20.6	27.4	176.2

Table 3.2.4. Radial (rad) and tangential (tan) swelling relative to the dimensions of oven dry wood for the samples conditioned to 5 different relative humidities and as started ('al')

Swelling	Z _{0-30%}		Z _{0-50%}		Z _{0-65%}		Z)-al	Z ₀ .	81%	Z ₀ .	94%	Z	0-ws
	rad	tan	rad	tan	rad	tan	rad	tan	rad	tan	rad	tan	rad	tan
Mean	0.7	2.1	1.1	2.8	1.4	3.5	1.8	4.3	2.1	4.9	3.0	7.0	3.4	8.1
Std	0.4	0.2	0.5	0.4	0.6	0.5	0.7	0.6	8.0	8.0	1.1	1.6	1.2	2.3
Min	0.0	1.8	0.4	2.4	0.6	2.8	0.7	3.4	1.0	3.8	1.6	5.0	1.9	5.5
Max	1.1	2.4	1.6	3.3	2.0	4.1	2.6	5.1	2.9	5.8	4.1	8.6	4.7	10.7
N	6	6	6	5	6	6	6	6	6	6	6	6	6	6

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 14/59

Table 3.2.5. Radial (rad) and tangential (tan) shrinkage for the samples conditioned to 5 different relative humidities and as started ('al') relative to the dimensions of water saturated wood

K _{ws-94%}		Kws-81%		K _{ws-65%}		K _{ws-65%}		K۷	Kws-al Kws-50%		s-50%	% K _{ws-30%}		K _{ws-0%}	
rad	tan	rad	tan	rad	tan	rad	tan	rad	tan	rad	tan	rad	tan		
0.3	0.8	0.7	1.7	1.3	3.2	1.6	3.5	1.7	4.0	2.3	5.2	3.2	7.3		
0.2	0.6	0.3	0.9	0.5	1.3	0.5	1.4	0.7	1.5	8.0	1.8	1.1	2.0		
0.1	0.4	0.4	0.9	0.7	1.9	1.0	2.1	1.0	2.5	1.5	3.5	1.9	5.1		
0.6	1.8	1.0	3.0	1.9	4.9	2.1	5.4	2.5	5.9	3.3	7.3	4.5	9.4		
	0.3 0.2 0.1	rad tan 0.3 0.8 0.2 0.6 0.1 0.4	rad tan rad 0.3 0.8 0.7 0.2 0.6 0.3 0.1 0.4 0.4	rad tan rad tan 0.3 0.8 0.7 1.7 0.2 0.6 0.3 0.9 0.1 0.4 0.4 0.9	rad tan rad tan rad 0.3 0.8 0.7 1.7 1.3 0.2 0.6 0.3 0.9 0.5 0.1 0.4 0.4 0.9 0.7	rad tan rad tan rad tan 0.3 0.8 0.7 1.7 1.3 3.2 0.2 0.6 0.3 0.9 0.5 1.3 0.1 0.4 0.4 0.9 0.7 1.9	rad tan rad tan rad tan rad 0.3 0.8 0.7 1.7 1.3 3.2 1.6 0.2 0.6 0.3 0.9 0.5 1.3 0.5 0.1 0.4 0.4 0.9 0.7 1.9 1.0	rad tan rad tan rad tan rad tan 0.3 0.8 0.7 1.7 1.3 3.2 1.6 3.5 0.2 0.6 0.3 0.9 0.5 1.3 0.5 1.4 0.1 0.4 0.4 0.9 0.7 1.9 1.0 2.1	rad tan rad tan rad tan rad tan rad 0.3 0.8 0.7 1.7 1.3 3.2 1.6 3.5 1.7 0.2 0.6 0.3 0.9 0.5 1.3 0.5 1.4 0.7 0.1 0.4 0.4 0.9 0.7 1.9 1.0 2.1 1.0	rad tan 0.3 0.8 0.7 1.7 1.3 3.2 1.6 3.5 1.7 4.0 0.2 0.6 0.3 0.9 0.5 1.3 0.5 1.4 0.7 1.5 0.1 0.4 0.4 0.9 0.7 1.9 1.0 2.1 1.0 2.5	rad tan rad tan rad tan rad tan rad tan rad tan rad 0.3 0.8 0.7 1.7 1.3 3.2 1.6 3.5 1.7 4.0 2.3 0.2 0.6 0.3 0.9 0.5 1.3 0.5 1.4 0.7 1.5 0.8 0.1 0.4 0.4 0.9 0.7 1.9 1.0 2.1 1.0 2.5 1.5	rad tan rad <td>rad tan rad tan tan rad tan rad tan rad tan tan rad tan tan rad tan rad tan tan tan tan tan</td>	rad tan tan rad tan rad tan rad tan tan rad tan tan rad tan rad tan tan tan tan tan		

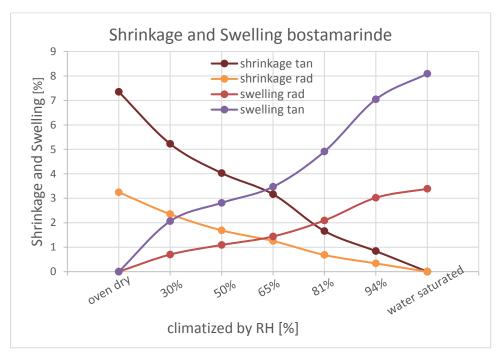


Figure 3.2.2 Shrinkage and swelling of bostamarinde climatized at various humidities

The swelling from 50% RH to 95% RH is respectively 1,9% and 4,4% for radial and tangential. The standard deviation is 0,6% and 1,5% respectively.

Durability

The median mass loss of the samples as a result of the exposition to each of the four fungi is given in Table 3.2.6. Also a provisional classification is indicated per fungus and test group based on that single value. All individual sample values are given in Appendix 3.

Table 3.2.6 mass loss and provisional durability class for the different fungi

Fungus	Conio	ohora	Poria pl	laconta	Corio	olus	Donkioporia expansa		
i uligus	pute	ana	Γ Οι Ια βι	acema	versi	color			
Wood species	ML	DC	ML	DC	ML	DC	ML	DC	
	(%)		(%)		(%)		(%)		
Bostamarinde	0.3	1	0.4	1	0.3	1	0.5	1	

The spread in the results is shown in table 3.2.7, for this species *Poria placenta* is the fungus resulting in the highest mass loss.

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 15/59

Table 3.2.7 Spread (in %) of individual mass loss values (n = 11) over the durability classes (DC) for *Poria*

	piaccina		
Group	sam	ples	•
DC	[no.]	(%)	
1	9	82	-
2	1	9	
3	0	0	
4	1	9	
5	0	0	

3.3 Gindya-udu

Lot assessment

Below a summary of the lot assessment is given (for further details see appendix 1).

Colour: red-brown, light striped by lighter streaks, sapwood yellowish, sometimes the

outsides of the heartwood lighter (red-yellow streaks) pinkish discolouration

around the heart

Sapwood: 3-9cm wide, clearly demarked from heartwood

Grain: straight

Interlocked grain: hardly, some reaction wood

Knots: one knot of 3cm Ø, one knot with Ø 4cm and one heart knot

Checks: little

Decay: stem 4: in heartwood places of brown rot and white rot, on one place a bore

hole (Ø around 7 mm) in the heartwood with a discolouration reaction around it. Smaller boreholes (Ø around 1mm) in sapwood, as well as blue stain and

white rot; stem 6 has some (mainly white) rot in the outside layers

Remarks: the decay intensity gives the impression that the stems, especially stem 4, laid

for longer time in the forest after felling.

Figure 3.3.1 Gindya-udu, sawn and planed

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 16/59

Wood anatomical description

Hardwood, diffuse porous, vessel distribution diffuse, solitary and in radial groups of 2-3, tangential diameter appr. 150 µm, appr. 7/mm², pits alternate, appr. 10 µm in diameter, vestured, vessel-rays pits similar but smaller. Fibres thick walled, non-septate. Parenchyma aliform with long thin to thick wings, 2-4 cells per strand, crystals in chambered cells. Rays uni-seriate, homogeneous.

Density, moisture content, shrinkage and swelling

The density of gindya-udu and moisture content are given in table 3.3.1. In table 3.3.2 and 3.3.3 the wood moisture contents at respectively descending and ascending relative humidity given. In table 3.3.4 and 3.3.5 are the shrinkage and swelling values given. Individual data are given in appendix 4.

Table 3.3.1. Density for moisture content as started at 20°C and 65% RH

N=26	density [kg/m³]	Moisture content (%)
mean (min-max)	1026.6 (959-1081)	14.93 (14.2-15.8)
std	39.8	0.33

Table 3.3.2. The equilibrium moisture content for different relative humidities at desorption. And the moisture content at water saturation

N=13	Woo	Wood moisture content (%) at descending relative humidity and water saturation												
	94%	81%	65%	50%	30%	Water saturated								
Mean	20.2	18.5	14.8	11.8	7.5	40.4								
Std	0.4	0.3	0.3	0.2	0.1	6.1								
Min	19.7	18.1	14.4	11.4	7.1	34.6								
Max	21	19.3	15.5	12.1	7.6	56.7								

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 17/59

Table 3.3.3. The equilibrium moisture content for different relative humidities at absorption and moisture content at water saturation

N=13	Wood moisture content (%) at ascending relative humidity and water saturation												
	30%	50%	65%	81%	94%	Water saturated							
Mean	7.8	10.1	11.9	15.3	19.6	37.7							
Std	0.2	0.2	0.1	0.2	0.4	5.1							
Min	7.5	9.8	11.7	15.2	19.2	33.3							
Max	8.0	10.4	12.1	15.9	20.4	52.8							

Table 3.3.4. Radial (rad) and tangential (tan) swelling relative to the dimensions of oven dry wood for the samples conditioned to 5 different relative humidities and as started ('al')

Swelling	Z _{0-30%}		Z _{0-50%}		Z 0-65%		Z)-al	Z ₀ .	81%	Z ₀ .	94%	Z)-ws
N=13	rad	tan	rad	tan	rad	tan	rad	tan	rad	tan	rad	tan	rad	tan
Mean	1.6	2.6	2.2	3.5	2.8	4.3	3.9	5.9	3.9	5.9	5.2	8.0	5.7	8.8
Std	0.2	0.1	0.3	0.2	0.3	0.2	0.4	0.4	0.4	0.4	0.5	0.6	0.5	0.6
Min	1.3	2.4	1.9	3.1	2.4	3.9	3.3	5.4	3.4	5.4	4.6	7.2	5.1	7.8
Max	2.0	3.0	2.7	3.9	3.3	4.9	4.8	6.7	4.6	6.8	6.1	9.2	6.5	10.1

Table 3.3.5. Radial (rad) and tangential (tan) shrinkage for the samples conditioned to 5 different relative humidities and as started ('al') relative to the dimensions of water saturated wood

					` '									
Shrinkage	Kws-94%		-94% K ws-81%		Kws-65%		Κν	vs-al	Kw	s-50%	Kw	Kws-30%		rs-0%
N=13	rad	tan	rad	tan	rad	tan	rad	tan	rad	tan	rad	tan	rad	tan
Mean	0.3	0.6	0.7	1.2	1.7	2.7	1.7	2.7	2.7	4.1	4.0	5.9	5.4	7.8
Std	0.0	0.1	0.1	0.2	0.2	0.4	0.2	0.4	0.2	0.4	0.3	0.5	0.4	0.5
Min	0.2	0.5	0.6	1.1	1.5	2.2	1.5	2.3	2.4	3.5	3.7	5.2	4.8	7.0
Max	0.4	0.8	0.9	1.7	2.0	3.6	2.1	3.6	3.0	4.9	4.5	6.8	6.1	8.7

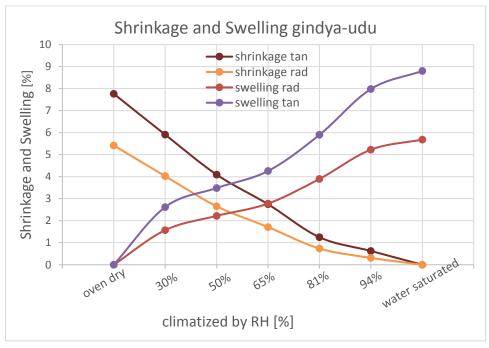


Figure 3.3.2 Shrinkage and swelling of gindya-udu climatized at various humidities

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 18/59

The swelling from 50% RH to 95% RH is respectively 3.0% and 4.5% for radial and tangential. The standard deviation is 0.2% and 0.4% respectively.

Durability

The median mass loss of the samples as a result of the exposition to each of the four fungi is given in Table 3.3.6. Also a provisional classification is indicated per fungus and test group based on that single value. All individual sample values are given in Appendix 3.

Table 3.3.6 mass loss and provisional durability class for the different fungi

Fungus	Conio pute		Poria placenta		Coriolus versicolor		Donkioporia expansa	
Wood species	ML	DC	ML	DC	ML	DC	ML	DC
	(%)		(%)		(%)		(%)	
Gindya-udu	-0.3	1	-0.1	1	0.2	1	0.0	1

In table 3.3.7 the spread of the individual mass loss values are shown. For this species *Coriolus versicolor* is the fungus resulting in the highest mass loss.

Table 3.3.7 Spread (in %) of individual mass loss values (n = 18) over the durability classes (DC) for

	Coriolus vers	icolor						
Group	Group samples							
DC	[no.]	(%)						
1	15	83						
2	0	0						
3	2	11						
4	1	6						
5	0	0						

3.4 Pakoeli

Lot assessment

Below a summary of the lot assessment is given (for further details see appendix 1).

Colour: brown, light striped , yellow sapwood, in 5.2.2.1 transitional wood is visible,

dark streaks

Sapwood: 4.5-8 cm wide clearly demarked from heartwood

Grain: straight Interlocked grain: not present

Knots: little, one heart plank has 7 little knots (Ø 2,5cm)

Checks: a number of large radial checks, filled with yellow extractives

Decay: in the sapwood is locally blue stain and white rot present

Remarks: the decay intensity gives the impression that the stem, laid for longer time in

the forest after felling.

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 19/59

Figure 3.4.1 Pakoeli planks, sawn and planed

Wood anatomical description

Hardwood, diffuse porous, vessel distribution diffuse, solitary and in radial groups of 2-10, in long radial groups the middle vessels sometimes smaller, tangential diameter wider vessels 50-200 μ m, appr. 10/mm², pits alternate, appr. 10 μ m in diameter, vessel-rays pits similar but smaller. Fibres thick walled, non-septate. Parenchyma in 3-5 cells wide bands, 5-8 cells per strand, with yellow extractives in individual cells. Rays 2-3-seriate, homogeneous to heterogeneous with one row of marginal cells.

Density, moisture content, shrinkage and swelling

The density of pakoeli with the moisture content are given in table 3.4.1. In table 3.4.2 and 3.4.3 the wood moisture contents at respectively descending and ascending relative humidity given. In table 3.4.4 and 3.4.5 are the shrinkage and swelling values given. Individual data are given in appendix 4.

Table 3.4.1. Density for moisture content as started at 20°C and 65% RH

N=14	density [kg/m³]	Moisture content (%)
Mean (min-max)	855 (790-937)	13.9 (13.6-14.2)
Std	55.2	0.18

Table 3.4.2. The equilibrium moisture content for different relative humidities at desorption. And the moisture content at water saturation

N=7	Wood moisture content (%) at descending relative humidity and water saturation									
	94%	81%	65%	50%	30%	Water saturated				
Mean	19.8	17.8	13.9	11.1	7.1	28.5				
Std	0.2	0.2	0.2	0.1	0.1	2.5				
Min	19.5	17.6	13.6	10.9	7.0	26.4				
Max	20.2	18.1	14.0	11.3	7.3	33.2				

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 20/59

Table 3.4.3. The equilibrium moisture content for different relative humidities at absorption and moisture content at water saturation

N=7	Wo	Wood moisture content (%) at ascending relative humidity and water saturation								
	30%	50%	65%	81%	94%	Water saturated				
Mean	7.5	9.5	11.2	14.4	19.1	31.0				
Std	0.1	0.1	0.1	0.1	0.2	1.5				
Min	7.3	9.4	11.1	14.3	18.8	28.6				
Max	7.5	9.6	11.3	14.6	19.4	32.5				

Table 3.4.4. Radial (rad) and tangential (tan) swelling relative to the dimensions of oven dry wood for the samples conditioned to 5 different relative humidities and as started ('al')

Swelling	Z _{0-30%}		Z ₀₋₃₀ % Z ₀₋₅₀ % Z ₀₋₆₅ %		Z _{0-al} Z ₀		Z ₀ .	D-81% Z		94%	Z	0-ws		
N=7	rad	tan	rad	tan	rad	tan	rad	tan	rad	tan	rad	tan	rad	tan
Mean	1.3	2.4	1.8	3.2	2.3	4.0	3.1	5.5	3.1	5.7	4.3	8.1	4.9	9.4
Std	0.2	0.3	0.2	0.3	0.2	0.4	0.2	0.6	0.2	0.5	0.3	0.9	0.3	1.0
Min	1.1	2.1	1.6	2.9	1.9	3.7	2.7	5.0	2.7	5.1	3.9	7.2	4.4	8.2
Max	1.5	2.9	2.0	3.7	2.4	4.6	3.4	6.3	3.3	6.5	4.6	9.4	5.3	11.0

Table 3.4.5. Radial (rad) and tangential (tan) shrinkage for the samples conditioned to 5 different relative humidities and as started ('al') relative to the dimensions of water saturated wood

Shrinkage	Kws	s-94%	Kws	s-81%	Kws	s-65%	Κ _ν	/s-al	Kw	s-50%	Kw	s-30%	Kw	/s-0%
N=7	rad	tan	rad	tan	rad	tan	rad	tan	rad	tan	rad	tan	rad	tan
Mean	0.2	0.5	0.6	1.4	1.4	3.3	1.5	3.3	2.2	4.5	3.2	6.2	4.5	7.9
Std	0.1	0.2	0.1	0.2	0.2	0.4	0.2	0.4	0.2	0.5	0.3	0.6	0.2	0.6
Min	0.0	0.3	0.4	1.0	1.3	2.6	1.4	2.7	2.0	3.8	3.0	5.3	4.2	7.0
Max	0.4	0.8	0.8	1.6	1.8	3.7	1.8	3.7	2.6	5.1	3.7	7.0	4.8	8.6

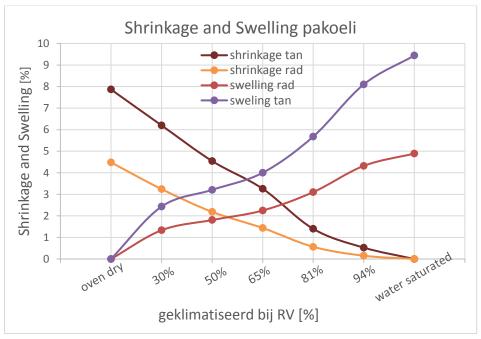


Figure 3.4.2 Shrinkage and swelling of pakoeli climatized at various humidities

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 21/59

The swelling from 50% RH to 95% RH is respectively 2.5% and 4.9% for radial and tangential. The standard deviation is 0.2% and 0.6% respectively.

Durability

The median mass loss of the samples as a result of the exposition to each of the four fungi is given in Table 3.4.6. Also a provisional classification is indicated per fungus based on that single value. All individual sample values are given in Appendix 3.

Table 3.4.6 mass loss and provisional durability class for the different fungi

Funance	Coniophora puteana		Dorio n	Davia placanta		Coriolus versicolor		Donkioporia	
Fungus			Poria placenta		versi			ansa	
Wood species	ML	DC	ML	DC	ML	DC	ML	DC	
	(%)		(%)		(%)		(%)		
Pakoeli	-2.1	1	-2.0	1	-1.6	1	-2.1	1	

In table 3.4.7 the spread of the individual mass loss values are shown. For this species *Coriolus versicolor* is the fungus resulting in the highest mass loss.

Table 3.4.7 Spread (in %) of individual mass loss values (n = 10) over the durability classes (DC) for Coriolus versicolor

Group	samples					
DC	[no.]	(%)				
1	10	100				
2	0	0				
3	0	0				
4	0	0				
5	0	0				

3.5 Kimboto

Lot assessment

Below a summary of the lot assessment is given (for further details see appendix 1).

Colour: homogeneous yellow, brighter areas visible, outside the brighter areas all the

wood is more or less blue stained

Sapwood: indistinct
Grain: straight
Interlocked grain: not present
Knots: not present

Checks: many, large radial and heart checks

Decay: stem 7 with boreholes (Ø around 3 mm) surrounded with discoloration / rot;

stem 3 with boreholes (Ø around 1 mm, up to 14mm deep in the wood)

sometimes with blue stain/ rot surrounding the boreholes. White rot around the

heart and diffuse present in the wood

Remarks: the decay intensity gives the impression that, especially stem 3, laid for longer

time in the forest after felling.

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 22/59

Figure 3.5.1 Kimboto planks sawn and planed, blue stain and wane

Wood anatomical description

Hardwood, diffuse porous, vessel distribution diffuse to a radial alignment or dendritic pattern, solitary and in radial groups of 2-10, tangential diameter 50-100 μ m, >20/mm², pits alternate, 2-3 μ m in diameter, vessel-rays pits simple or similar to intervessel pits but smaller. Fibres thick walled, non-septate. Parenchyma in unregular wavy 1(-2) cells wide bands, 5-9 cells per strand. Rays 2(-3)seriate, appr. 800 μ m high, combined rays higher, heterogeneous with one of more rows of marginal cells.

Density, moisture content, shrinkage and swelling

The density of kimboto with the specific moisture content is given in table 3.5.1. In table 3.5.2 and 3.5.3 the wood moisture contents at respectively descending and ascending relative humidity given. In table 3.5.4 and 3.5.5 are the shrinkage and swelling values given. Individual data are given in appendix 4.

Table 3.5.1. Density for moisture content (20°C 65% RH)

N=10	density [kg/m³]	Moisture content (%)
Mean (min-max)	872.4 (815-969)	15.8 (14.9-17.1)
Std	57.9	0.9

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 23/59

Table 3.5.2. The equilibrium moisture content for different relative humidities at desorption. And the moisture content at water saturation

N=5	Wood moisture content (%) at descending relative humidity and water saturation									
	94%	81%	65%	50%	30%	Water saturation				
Mean	25.5	21.3	15.6	12.7	8.6	77.9				
Std	1.4	1.2	1.0	1.0	1.0	10.4				
Min	24.2	20.2	14.7	11.8	7.6	61.8				
Max	27.1	22.6	16.9	13.9	9.8	88.3				

Table 3.5.3. The equilibrium moisture content for different relative humidities at absorption and moisture content at water saturation

N=5	Wood moisture content (%) at ascending relative humidity and water saturation									
	30%	50%	65%	81%	94%	Water saturation				
Mean	8.8	11.4	13.6	18.0	25.1	78.0				
Std	1.0	1.0	1.1	1.2	1.5	10.4				
Min	8.0	10.5	12.6	16.8	23.6	61.9				
Max	9.9	12.6	14.8	19.3	26.9	87.7				

Table 3.5.4. Radial (rad) and tangential (tan) swelling relative to the dimensions of oven dry wood for the samples conditioned to 5 different relative humidities and as started ('al')

Swelling	Z ₀ -	30%	Z ₀ .	-50%	Z ₀ .	65%	Z)-al	Z ₀ .	81%	Z ₀	-94%	Z	0-ws
N=5	rad	tan	rad	tan	rad	tan	rad	tan	rad	tan	rad	tan	rad	tan
Mean	1.8	3.0	2.5	4.1	3.1	5.0	3.8	6.3	4.2	7.2	5.9	10.9	6.6	13.6
Std	0.4	0.2	0.4	0.1	0.5	0.1	0.5	0.1	0.6	0.2	0.9	0.4	1.0	1.1
Min	1.4	2.8	2.0	3.9	2.5	4.8	3.3	6.0	3.5	7.0	4.8	10.6	5.5	12.0
Max	2.2	3.3	2.9	4.2	3.5	5.2	4.4	6.4	4.9	7.5	6.9	11.4	7.8	15.0

Table 3.5.5. Radial (rad) and tangential (tan) shrinkage for the samples conditioned to 5 different relative humidities and as started ('al') relative to the dimensions of water saturated wood

					,									
Shrinkage	Kws	s-94%	Kws	s-81%	Kws	s-65%	K۷	/s-al	Kw	s-50%	Kw	s-30%	Κ _ν	/s-0%
N=5	rad	tan	rad	tan										
Mean	0.5	2.0	1.3	3.7	2.5	6.2	2.5	6.4	3.3	7.5	4.4	9.1	6.2	11.5
Std	0.2	0.6	0.2	0.7	0.4	8.0	0.3	8.0	0.5	8.0	0.6	0.9	8.0	0.9
Min	0.2	1.1	1.1	2.5	2.2	4.9	2.2	5.0	2.9	6.1	3.9	7.7	5.3	10.1
Max	0.6	2.7	1.5	4.3	3.0	6.9	3.0	6.8	3.9	8.1	5.2	9.9	7.2	12.4

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 24/59

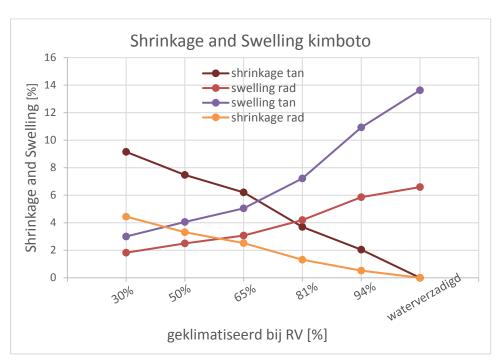


Figure 3.5.2 Shrinkage and swelling of kimboto climatized at various humidities

The swelling from 50% RH to 95% RH is respectively 3.4% and 6.9% for radial and tangential. The standard deviation is 0.5% and 0.3% respectively.

Durability

The median mass loss of the samples as a result of the exposition to each of the four fungi is given in Table 3.5.6. Also a provisional classification is indicated per fungus based on that single value. All individual sample values are given in Appendix 3.

Table 3.5.6 mass loss and provisional durability class for the different fungi.

F	Conio	phora	Davia v	Poria placenta		iolus	Donkioporia		
Fungus	pute	ana	Poria p	iacenta	versi	color	Donkioporia expansa ML DC (%) -2.1 1	ansa	
Wood species	ML	DC	ML	DC	ML	DC	ML	DC	
	(%)		(%)		(%)		(%)		
Kimboto	-2.1	1	-2.0	1	-1.6	1	-2.1	1	

In table 3.5.7 the spread of the individual mass loss values are shown. For this species *Coriolus versicolor* is the fungus resulting in the highest mass loss.

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 25/59

Table 3.5.7 Spread (in %) of individual mass loss values (n = 5) over the durability classes (DC) for Coriolus versicolor

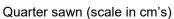
COHOIUS VEISICOIOI							
Group	san	nples	-				
DC	[no.]	(%)					
1	3	60	-				
2	0	0					
3	1	20					
4	1	20					
5	0	0					

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 26/59

4 Discussion

4.1 Ingipipa

Summary of the results originated from 4 plates of one stem:


Wood quality: light brown in colour, light colour variations, sapwood indistinct, almost failure free timber, but decay in outermost layer (stems probably remained long time in forest)

Density at 14% is 744 kg/m³ and variation is low.

Shrinkage radial / tangential is total 5.6% and 8.1%; wet to moisture content of 11.3%, 2.9% and 4.6%.

Durability is variable (57% of samples in class 1, 29% in class 4).

Flat sawn (scale in cm's)

Cross section, height 5 mm

Compared to the data from literature of tauari (*Couratari spp.*), our material has the same wood colour and structure and it can be regarded as heavy tauari with similar shrinkage behaviour (literature: total 5.8% and 7.8% and from wet to 12% moisture content of 2.8% and 4.5%). The variability showed by the durability tests is also comparable with the information from the literature. Wood with decay (probably less durable parts of the stem) was excluded from the test and therefore we think that the durability tests show an overestimation over the behaviour of ingipipa against fungal attack.

Additional information from literature: The workability is variable, like the resistance to shipworm since the silica content varies between the different species. The durability varies class 5, and class 4 are reported as well as class 2 for *Tauari branco* with density ≥600 kg/m³ (moisture content 12%); bending related to density (for small clear specimen 50 - 130N/mm²).

Compared to tauari, our material is homogeneous in density and colour, it also lacks false heart (brown-red in colour) and resin canals filled with black extractives. Tests on additional stems (at least two) provide further support for its homogeneity.

The use of ingipipa is not different from that of tauari but the supposed homogeneity is in favour of ingipipa.

References used: Japing & Japing 1960, Klaassen 2018.

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 27/59

4.2 Bostamarinde

Summary of the results originated from 3 plates of one stem:

Wood quality: yellow in colour, light pinkish around the heart, with darker lines, sapwood indistinct, grain straight, some knots, distinct and regular interlocked grain. Decay in outermost layer and borer holes (stems probably remained long time in forest).

Density at 16% is 573 kg/m³ but variable (450-700 kg/m³).

Shrinkage radial / tangential is total 3.2% and 7.3%; wet to moisture content of 12.6%, 1.7% and 4.0%.

Durability is high with some variation (82% of samples in class 1, 9% in class 2 and 9% in class 4).

Quarter sawn (scale in cm's)

Flat sawn (scale in cm's)

Cross section, height 5 mm

The name bostamarinde is used in Suriname for the genera: *Hydrochorea corymbosa* (synonyms: *Pithecellobium corymbosum, Arthosamanea corymbosa*), *Parkia oppostifolia, Stryphnodendron* and *Martiodendron parviflorum*. The anatomy of first thee species is different from the wood studied. The structure of the last one, also called pintolocus, is similar but it has less clear storied ray arrangement and its heartwood is red-brown in contrast to the pinkish colour we found. In Suriname also the name white pintolocus is used probably referring to whitish heartwood. Additional stems should give more information on the identity of the wood (especially with regard to heartwood formation).

The durability tests show a high resistance against fungi. But we should be careful with conclusions because wood with decay (probably less durable parts of the stem) was excluded from the test and therefore we think that the durability tests show an overestimation over the behaviour of bostamarinde against fungal attack.

If the durability is confirmed with material from additional non-degraded stems, than there are many possibilities for outside use, taking into account the larger difference in radial and tangential shrinkage and the interlocked grain.

References used: Bhikhi et al 2016, Klaassen 2018.

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 28/59

4.3 Gindya-udu

Summary of the results originated from 2 stem with 3 plates each.

Wood quality: red-brown in colour, colour variations between stems (light and darker), red-yellow streaks and pinkish around the heart, sapwood distinct, some knots, straight grain, some reaction wood, some decay in sapwood and discoloration around bore holes (one stem probably remained long time in the forest).

Density at 15% is 1027 kg/m³ and variation is low.

Shrinkage radial / tangential is total 5.4% and 7.8%; wet to moisture content of 12%, 2.7% and 4.1%. Durability is high with some variation (83% of samples in class 1, 11% in class 3 and 6% in class 4, lowest values in stem 6).

Quarter sawn (scale in cm's)

Flat sawn (scale in cm's)

Cross section yellow coloured, height 5 mm

Quarter sawn (scale in cm's)

Flat sawn (scale in cm's)

Cross section brown coloured, height 5 mm

Compared to the data from literature of gindya-udu (*Buchenavia* spp.) our material has the same wood colour and colour variance and structure. The shrinkage behaviour as described in the literature is variable (found values for total radial and tangential of 8% and 12% and for wet to 12% moisture content of 5.5% and 8%, other sources refer to a total shrinkage of 2.8% and 5.6%). Our values are just in between the variation. The durability found in our tests is somewhat higher than found in literature (class 2-3). Wood with decay (probably less durable parts of the stem) was excluded from the test and therefore we think that the durability tests show an overestimation over the resistance of gindya-udu against fungal attack. We suppose also a relationship between durability and colour. Lighter coloured wood seems to be less durable (figure 4.3.1).

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 29/59

References used: Comvalius 2001, Gerard et al. 1996, Klaassen 2018.

Figure 4.3.1 Mass loss in per percentage because of *Coriolus versicolor* (see Appendix 3 for) and wood colour

4.4 Pakoeli

Summary of the results originated from 2 stems with two plates each.

Wood quality: brown in colour, intermediary wood, sapwood distinct, large cracks (often filled with yellow extractives), small knots, local decay

Density at 14% is 855 kg/m³ and variation is low.

Shrinkage radial / tangential is total 4.5% and 7.9%; wet to moisture content of 11.1%, 2.2% and 4.5%.

Durability is high (100% of samples in class 1).

Quarter sawn (scale in cm's)

Flat sawn (scale in cm's)

Cross section, height 5 mm

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 30/59

Compared to the data from literature of pakoeli (bacuri, *Platonia* spp.), our material has the same wood colour, extractives, structure and shrinkage behaviour (literature: total 4.5% and 9% and from wet to 12% moisture content of 3.0% and 4.5%). The high durability is confirmed by literature.

Additional information from literature: pakoeli has a tendency to distort and check, therefore it should be carefully dried, the workability is good but the variable silica content and hardness has to be taken in consideration.

References used: Comvalius 2001, Gerard et al. 1996, Japing & Japing 1960, Klaassen 2018.

4.5 Kimboto

Summary of the results originated from 4 plates of one stem:

Wood quality: yellow in colour with brighter areas, sapwood indistinct, texture homogeneous, cracks, straight grain, outside the bright area, all the timber is degraded or blue stained. (stems remained long time in forest).

Density at 16% is 872 kg/m³ and some variation.

Shrinkage is large: radial / tangential is total 6.2% and 11.5%; wet to moisture content of 12.7%, 3.3% and 7.5%.

Durability is variable (60% of samples in class 1, 20% in class 3, 20% in class 4).

Quarter sawn (scale in cm's)

Flat sawn (scale in cm's)

Cross section, height 5 mm

Compared to the data from literature of kimboto (casca, *Pradosia* spp.), our material has the same wood colour, structure, shrinkage behaviour (literature: total 6.9% and 11.3% and from wet to 12% moisture content of 3.5% and 6.5%) and sensitivity to blue stain The high or moderate durability is not confirmed by literature (probably due to forest exposition of our material).

Additional information from literature: workability is not easy due to the silica content and hardness. It is recorded that the timber is suitable for inside heavy constructions, house framing, floors and furniture.

References used: Comvalius 2001, Gerard et al. 1996, Japing & Japing 1960, Klaassen 2018.

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 31/59

5 Conclusion

The five timber species from Suriname were investigated according to Dutch standard (SKH Publication 97-04) in order to get an idea of their properties and use potential. This standard is developed to get a first impression of the use potential of lesser and unknown timber species specific for joinery but also for timber use in general.

For all applications it is important to know the botanical identity of the timbers as properties are species related. Therefore descriptions of the structure and pictures of the three main wood surfaces have to be available in order to make sure that clear recognition is possible. For all five species these descriptions and pictures were made and compared with literature. The identity of four species was confirmed and the data on their properties were collected. Descriptions of bostamarinde in literature are contradicting and limited and therefore it was impossible to make a clear identification of this species .

The available wood quality of each species is an important item to determine its use potential. Failure free large and thick boards have a large potential whereas the potential is very limited for small boards with many failures (e.g. knots, sapwood, deviant grain, cracks) although its properties could be excellent. In order to get a good idea of the wood quality at least 27 boards originating from at least 3 different trees are required. In this study one stem only was available for pakoeli, bostamarinde, and ingipipa. Two stems only were available for gindya-udu and kimboto. Therefore the wood quality determined of each of the species should be regarded as a first impression of the potential quality to be expected on the Dutch and other foreign markets. The wood quality of all five investigated species is promising but large checks appeared in ingipipa, kimboto, and pakoeli and these should be avoided by a more careful handling avoiding too fast drying.

The first impression of the wood quality, density and dimension stability shows that the Surinam ingipipa compared to its South American relatives is more homogeneous, the Surinam gindya-udu is more variable, and the Surinam kimboto and pakoeli are similar to the information found in the literature. For gindya-udu selection on quality could improve the homogeneity. Although bostamarinde could not be identified as such, the material investigated shows reaction wood, interlocked grain, and decay, suggesting specific use with requirement of careful handling and selection on quality.

The resistance against fungal decay of a wood species is difficult to describe because it varies with how the timber is used and with different locations of the wood in the tree. In soil contact other wood degrading fungi are active than in timber use above the ground. Therefore there are different standards to test the resistance against fungal decay, accelerated tests with and without soil contact and field tests. The Dutch standard used here, (focussing on joinery), demands an accelerated test without soil contact. All stems in at least some parts, of the species tested here, show some decay. Presence of decay in wood samples for the durability test is not allowed in these tests and therefore only sound timber was selected. The samples used in the durability test therefore give an overestimation of the resistance against fungal decay and do not represent the full variation of the species. The results of the test therefore only give an idea of the durability of the species. In this conclusion no classification can be mentioned because the number of samples did not fulfil the requirements of the standard.

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 32/59

The information of the wood quality and durability is too limited for a clear statement of use potential.

Summary per species

The summary below gives a preliminary estimation of the use potential per species, based on the available data (this project and literature) and the expectation based on the quality of more and representative sample material:

- Surinam ingipipa: if a lower tangential shrinkage and a higher durability can be proven, then
 the species could be suitable for outside joinery, if a higher durability cannot be proven then
 only inside use is possible.
- Surinam bostamarinde: if the identity of the species is known and a quality selection can provide timber without reaction wood, it has potential for inside use.
- Surinam gindya-udu: the species could have potential for ground and water constructions.
- Surinam pakoeli: the species could have potential for ground and water constructions.
- Surinam kimboto: the species has potential for inside use but only in decay/blue stain free qualities.

Recommendations

Research on eight additional stems (so for every species in total 3 stems are tested) should be done and the results should be included in the data already available. With this extension clear scientifically sound statements on durability and use potential of each of the Surinam timber species can be made and the identity of bostamarinde can be confirmed.

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 33/59

Literature

- Bhikhi C.R., Maas P.J.M., Koek-Noorman, J. & Van Andel T.R. 2016. Timber trees of Suriname an identification guide. LM Publishers.
- CEN/TS 15083-1. 2005. Durability of wood and wood-based products Determination of the natural durability of solid wood against wood-destroying fungi, test methods Part 1: Basidiomycetes. NEN, Delft. 20 p.
- Comvalius, L. (2001). Surinamese timber species, characteristics and utilization. Paramaribo: Djinipi N.V.
- EN 350. 2016. Durability of wood and wood-based products Testing and classification of the durability to biological agents of wood and wood-based materials. NEN, Delft. 67 p.
- Gerard, J., Miller, R., & ter Welle, B. (1996). Major Timber Trees of Guyana Timber Characteristics and Utilization. Wageningen: The Tropenbos Foundation.
- Japing, C., & Japing, I. H. (1960). Houthandboek Surinaamse houtsoorten. Paramaribo: Dienst 's lands bosbeheer Suriname.
- Klaassen, R. (2018). Houtvademecum. Zwolle: vakbladen.com & smartwave.
- SKH Publication 97-04. 2014. Basis for assessment for timber species for use in joinery; requirements and methods of determination. SKH, Wageningen, Netherlands. 22 p.

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 34/59

Appendix 1 Lot assessment

Ingipipa (stem 1)

Below the available ingipipa is described based on the lot assessment.

Stem 1 plate 1: 3 beams 13x7cm, 16,5x7cm and 17x7.5cm (1 with wane)

plate 2: 3 beams 18x7cm, 17x7cm and 17x7cm

plate 3: 2 beams 17.5x8cm and 17.5x8cm (1 with wane) plate 4: 3 beams 16x8cm, 17.5x8cm and 18.5x8cm

Colour: light brown with light streaks

Sapwood: not clearly demarked: width: 1.1.1.1 (8cm); 1.1.1.2 (10cm); 1.1.2.1 (1,5 cm);

1.1.3.1 (4 cm to wane); 1.1.4.2 (1 cm)

Grain: straight
Interlocked grain: not present
texture: light striped
Knots: not present

Checks: Some radial checks, increasing towards the pit. Bark pocket over a length of

30cm

Decay: Mainly in the outer side of the sapwood, a lot of white rot in the sapwood,

numerous boreholes in the sapwood, but as well in the heartwood

1.1.1 and 1.1.3 are not suitable for further research (white rot and bore holes)

partially useable is 1.1.4 (parts decayed by white rot)

Remarks: Possible stem 1 has been too long in the forest after felling.

Date: October 22nd, 2019 Page: 35/59 Report code: 17.0431-revised 2

Plate 1 side

Plate 3

Plate 4

Plate 4

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 36/59

Bostamarinde (stem 2)

Below the available bostamarinde is described based on the lot assessment.

Stem 2.1 plate 1: 2 beams 23x7.7cm and 21x7.5cm (1 with wane, 1 with boxed heart)

plate 2: 3 beams 24x7cm, 18x7cm and 24x7 cm

plate 3: 3 beams 22x7.5cm, 23x7.5cm and 24x7.5 cm (2 with wane)

Colour: yellow, little pinkish around the heart

Sapwood: not clearly demarked no colour difference: width possible 3-4.5cm. locally

blue, possibly as reaction to environment (present in 2.1.3.2, 2.1.3.1 and

2.1.1.1)

Grain: straight

Interlocked grain: distinct and regular

Texture: besides interlocked grain also a wengé-like pattern (alternating light and dark

zones)

Knots: in the heart plank two larger knots (Ø 3cm, with bark pocket one knot with

some brown rot) also some pin knots

Checks: Only present in the heart plank

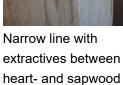
Decay: white rot in outer side (sapwood) and locally deeper (2.1.3.2, 2.1.3.1 and

2.1.1.1). only deeper in 2.1.2.1 and 2.1.2.2. worm only (little) present in

sapwood

Remarks: At the transition from sapwood to heartwood is a thin canal with extractives

present. Possibly a lot of reaction wood.


Sapwood with worm

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 37/59

Heart plank with check

Reaction wood detail

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 38/59

Gindya-udu (stem 4 and 6)

Stem 4.1 plate 1: 4 beams 11x4cm, 7.5x4cm, 12.5x4cm and 7x4cm (2 with wane, 2 with

sapwood)

plate 2: 3 beams 12x7cm, 14.5x7cm and 15x7cm (1 with wane, 2 with

sapwood)

plate 3: 3 beams 14.5x5cm, 15.5x5.5cm and 11.5x5.5cm (1 with wane, 2 with

sapwood)

Stem 6.1 plate 1: 3 beams 10x4.57cm and 12x9.5cm (2 met wane and sapwood)

plate 2: 2 beams 14.5x3.5cm and 15.5x3.5cm (1 with sapwood)

plate 3: 3 beams 17.5x7.5cm, 17.5x7.5cm and 17.5x7.5 cm (1 met wane, 1

with heart, 2 with sapwood)

Colour: red-brown, sapwood yellowish, sometimes the outsides of the heartwood

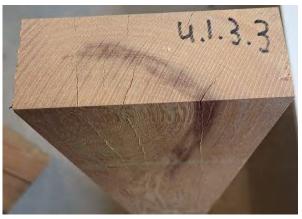
lighter (red-yellow streaks) pinkish discolouration around the heart

Sapwood: 3-9cm wide, clearly demarked from heartwood

Grain: straight

Interlocked grain: hardly, some reaction wood
Texture: light striped by lighter streaks

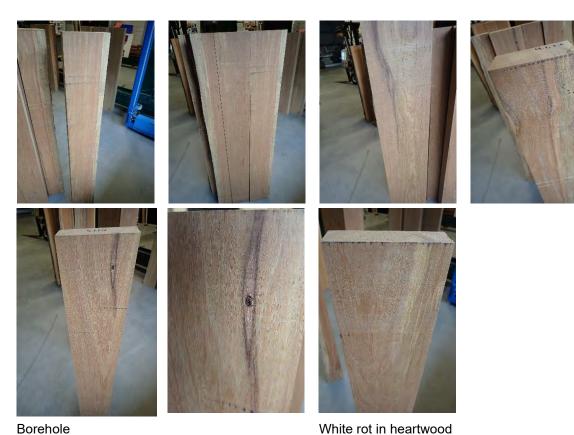
Knots: one knot of $3 \text{cm } \emptyset$, one knot with \emptyset 4cm and one heart knot


Checks: little

Decay: stem 4: in heartwood places of brown rot and white rot, on one place a bore

hole (\varnothing around 7 mm) in the heartwood with a colouration reaction around it. Smaller boreholes (\varnothing around 1mm) in sapwood, as well as blue stain and

white rot. For stem 6 it is mainly (white)rot in the outside possible stem 4 has been too long in the forest after felling.



Stem 4

Remarks:

Date: October 22nd, 2019 Report code: 17.0431-revised 2 Page: 39/59

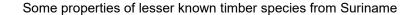
Borehole

Stem 6

Cross section, wane, sapwood, drying checks, decay

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 40/59





Overgrown injury detail

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 41/59

Kimboto (stem 3 and 7)

Stem 3.1 plate 1: 3 beams 14x4cm, 14x4cm and 14x4cm (2 with wane)
Stem 3.2 plate 2: 2 beams 17.5x7,5cm and 17.5x7.5cm (1 with boxed heart)

Stem 7.1 plate 1: 2 beams 15x4.5cm and 14.5x4.5cm (1 with wane)

plate 2: 3 beams 17.5x8.5cm, 15x8.5cm, 15x8.5cm (1 with boxed heart, 1 with

wane)

Colour: yellow, brighter areas visible, sapwood invisible, outside the brighter areas al

the wood is more or less blue stained.

Sapwood: invisible
Grain: straight
Interlocked grain: not present
Texture: homogeneous
Knots: not present

Checks: many, large radial and heart checks

Decay: stem 7 with boreholes (Ø around 3 mm) surrounded with colouration / rot;

stem 3 with boreholes (Ø around 1 mm, up to 14mm deep in the wood)

sometimes with bleu stain/ rot surrounding the boreholes. White rot around the

heart and diffuse present in the wood

Remarks: possible stem 3 has been too long in the forest after felling.

Date: October 22nd, 2019 Page: 42/59 Report code: 17.0431-revised 2

Boreholes with blue stain (rot)

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 43/59

Boreholes

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 44/59

Pakoeli (stem 5)

Stem 5.1 plate 1: 3 beams 14x4.5cm, 12.5x4.5cm and 11x4.5cm (1 with wane, 2 with

sapwood)

plate 2: 3 beams 19x8.5cm, 15x8.5cm and 13x8.5cm (1 with wane, 2 with

sapwood, 1 with boxed heart)

Stem 5.2 plate 1: 3 beams 15.5x7.5cm, 15.5x7.5cm and 16x7.5cm (1 with wane, 2 with

sapwood, 1 with boxed heart)

plate 2: 3 beams 12x4.5cm, 13x4.5cm and 14x7.5cm (2 with wane, 2 with

sapwood)

Colour: brown, yellow sapwood, in 5.2.2.1 transitional wood is visible, dark streaks

Sapwood: 4.5-8cm wide clearly demarked from heartwood

Grain: straight
Interlocked grain: not present
Texture: light striped

Knots: little, one heart plank 7 little knots (Ø 2.5cm)

Checks: a number of large radial checks, filled with yellow extractives

Decay: the sapwood is locally bleu stained and/or rot

Remarks: possible the stem has been too long in the forest after felling.

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 45/59

Appendix 2 Samples for durability tests

Samples of ingipipa

Samples of gindya-udu

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 46/59

Samples of pakoeli

8.6	0.2	0.1	8.3	84	8,5
9.6	9,2	9.1	9.3	9.4	9.5
10.6	10.2	10,1	10,3	104	10.5
71.6	11.2	11.1	11,3	11.4	11.5
12.6	12.2	12.1	17.3	12.4	15.5
	13.2]3]	133	13,4	13.5
14.6	14.2	14.7	14.3	14.4	14.5
15.6	15.2	15.]	15.3	15.4	15.5
16.6	16.2	.16.1	16.3	16.4	16.5
17.6	17.2	17.1	17.3	17.4	17.5
	18.2	18.1	183	18.9	10.5

Samples of bostamarinde

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 47/59

47.0	47.1	47.8	473	42.4	475
48.0	40:1	488	48.3	98.4	48.5
49.0	49.1	49.2	493	49.4	49.5
50.0	LOS	50,2	50.3	50,4	208
51.0	51.8	51.2	513		51.5

Samples of kimboto

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 48/59

Appendix 3 Data of durability tests

In the durability test the samples got a new (shorter) code. The connection between the new and original codes is given below

original codes is given	des
Original	Durability test
1,1,2,1A	1
1,1,2,1B	2
1,1,2,2A	3
1,1,2,2B	4
1,1,2,3	5
1,1,4,2A	6
1,1,4,2B	7
2,1,1,1A	8
2,1,1,1B	9
2,1,1,3A	10
2,1,1,3B	11
2,1,2,1	12
2,1,2,2	13
2,1,2,3	14
2,1,3,1	15
2,1,3,2A	16
2,1,3,2B	17
2,1,3,3	18
4,1,1,3	19
4,1,2,1A1	20
4,1,2,1A0	21
4,1,2,1A2	22
4,1,2,1B	23
4,1,2,2	24
4,1,2,3	25
4,1,3,2	26
4,1,3,3	27
4,1,3,1	28
5,1,1,3A	29
5,1,1,3B	30
5,2,1,1	31
5,2,1,2	32
5,2,1,3	33
5,2,2,1A	34
5,2,2,1B	35
5,2,2,2A	36
5,2,2,2B	37
5,2,2,3	38

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 49/59

Co	des
Original	Durability test
6,1,1,1	39
6,1,1,2	40
6,1,1,3	41
6,1,2,1	42
6,1,3,1A	43
6,1,3,1B	44
6,1,3,2A	45
6,1,3,2B	46
7,1,1,1A	47
7,1,1,1B	48
7,1,1,2	49
7,1,2,1	50
7,1,2,3	51

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 50/59

				22 C /	Calculated	dry matter moisture	ds%	Weight after 16	Dry weight	Moisture after 16			median mass
extra code	plank	nr	fungus	65%RH	dry weight	control		weeks	after 16 weeks	weeks	Mass loss	DK	loss
				(g)	(g)	[g]	[%]	(g)	(g)	(%)	(%)		(%)
Coniophora	a putear	na											
1.1	1			14,935				22,5971	12,9601	74,4%	0,6%	1	
2.1	2	1	1	13,234	11,523375			19,0502	11,4539	66,3%	0,6%	1	
3.1	3	1	1	14,153	12,303132			19,605	12,3134	59,2%	-0,1%	1	
4.1	4	1	1	14,377	12,497038			18,5254	12,4947	48,3%	0,0%	1	-0,1%
5.1	5	1	1	13,2935	11,589421			19,2336	11,6023	65,8%	-0,1%	1	
6.1	6	1	1	14,327	12,451293			18,6137	12,4651	49,3%	-0,1%	1	
7.1	7	1	1	14,209	12,372635			20,8476	12,4294	67,7%	-0,5%	1	
8.1	8	1	1	12,0878	10,648186			19,6187	10,6195	84,7%	0,3%	1	
9.1	9	1	1	10.8024	9.5158479			17,5251	9.4678	85.1%	0,5%	1	1
10.1	10	1		12,3754				18,6426	10,8591	71,7%	0,3%	1	
11.1	11	1	1	12,2782				18,1891	10.8016	68,4%	0,2%	1	
12.1	12	1	1	12,3002				18,8118	10,7831	74,5%	0,3%	1	
13.1	13	1		10,7082				17,0473	9,3867	81,6%	0,2%	1	
14.1	14	1		12,115				19,097	10,6658	79,0%	0,1%	1	
15.1	15	1		10.485				15.932	8.9928	77,2%	2.7%	1	
16.1	16	1	_	10,3486				13,5435	8,461	60,1%	7,2%	2	
17.1	17	1		12,6866				19,824	11,1582	77,7%	0,3%	1	
18.1	18	1		11,4789	10,11286				10,0817	60,0%	0,3%	1	
	19	1						16,1293					
19.1				20,4025	17,68			22,8858	17,7493	28,9%	-0,4%	1	
20.1	20	1		20,734				22,7912	17,9397	27,0%	-0,3%	1	
21.1	21	1			17,443811			22,2608	17,4737	27,4%	-0,2%	1	
22.1	22	1			17,619193			22,4952	17,6689	27,3%	-0,3%	1	
23.1	23	1			17,103328			22,1411	17,1253	29,3%	-0,1%	1	
24.1	24	1		20,1285				22,8881	17,4427	31,2%	-0,3%	1	
25.1	25	1		18,69				20,9088	16,2055	29,0%	-0,4%	1	
26.1	26	1		20,304				21,8791	17,5989	24,3%	-0,3%	1	
27.1	27	1		19,4685				22,1425	16,8368	31,5%	-0,2%	1	
28.1	28	1		20,0965				22,7104	17,4442	30,2%	-0,2%	1	
29.1	29	1		18,029				20,2379	16,3572	23,7%	-2,1%	1	
30.1	30	1		17,879	15,799242			20,2324	16,2276	24,7%	-2,7%	1	
31.1	31	1		12,655	11,191787			14,5813	11,5049	26,7%	-2,8%	1	
32.1	32	1		14,175	12,485747			15,9415	12,8461	24,1%	-2,9%	1	
33.1	33	1	1	15,2445	13,39838			16,9592	13,7232	23,6%	-2,4%	1	-2,1%
34.1	34	1	1	14,7155	12,917799			16,6423	13,0972	27,1%	-1,4%	1	=2,170
35.1	35	1	1	16,361	14,295209			18,1346	14,3857	26,1%	-0,6%	1	
36.1	36	1	1	14,3465	12,641094			16,5895	12,8461	29,1%	-1,6%	1	
37.1	37	1	1	15,298	13,397709			17,1673	13,6796	25,5%	-2,1%	1	
38,3	38	1		17,122				19,2189	15,0088	28,1%	-0,7%	1	
39.1	39	1	1	18,8445				22,8192	16,253	40,4%	1,1%	1	
40.1	40	1	1	18,3245				20,7733	15,8876	30,8%	0,3%	1	
41.1	41	1		19,5375			1	22,9973	17,2193	33,6%	-1,4%	1	
42.1	42	1		18,6535				23.1457	16.36	41,5%	-1,0%	1	1
43.1	43	1		19,737				22,9874	17,2534	33,2%	-0,7%	1	
44.1	44	1			15,942021			21,9077	16,0062	36,9%	-0,4%	1	
45.1	45	1		18,264				22,4916	15,747	42,8%	0,3%	1	
46.1	46	1		19,2225				22,4916	16.6633	33,0%	-0,4%	1	
47.1	47	1	_	16.6355				24.1727	14.1864	70.4%	1,8%	1	
48.1	47	1											
49.1	48	1		16,705				23,4058	13,8622	68,8%	4,5%	1	
				19,255				25,69	15,9628	60,9%	4,8%	1	
50.1	50	1		18,3765	16,029		-	23,9913	15,0056	59,9%	6,4%	2	
51,2	51	1	1	17,459	15,250326			24,9979	14,779	69,1%	3,1%	1	

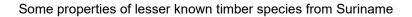
Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 51/59

				Weight	Calculated	drymatter	ds%	Weight	Dry weight	Moisture			
				22 C /	Garoaratoa	moisture	4070	after 16	Diff worging	after 16			
extra code	plank	nr	fungus	65%RH	dry weight	control		weeks	after 16 weeks	weeks	Mass loss	DK	
	F			(g)		[g]	[%]	(g)	(g)	(%)	(%)		
ria placen	ta			(3)	107	101	1	(0)	(0)				
1.3	1	3	3	14.997	13,093958			17.9093	13.0909	36.8%	0.0%	1	
2.3	2	3		13,0935				14,8367	11,4151	30,0%	-0,1%	1	
3.3	3	3	3	14,29	12,422225			16,5526	12,4193	33,3%	0,0%	1	
4.3	4	3	3	14,374	12,49443			18,5597	12,6109	47,2%	-0,9%	1	-0,1%
5.3	5	3	3	13,1825	11,49265			15,7991	11,5554	36,7%	-0,5%	1	
6.3	6	3	3	14,25	12,384374			16,1674	12,4081	30,3%	-0,2%	1	
7.3	7	3	3	14,0005	12,191082			15,4913	12,1911	27,1%	0,0%	1	
8.3	8	3	3	12,8104	11,284727			17,1796	11,2586	52,6%	0,2%	1	
9.3	9	3	3	10,4546	9,2094704			13,0327	8,9438	45,7%	2,9%	1	
10.3	10	3	3	13,2475	11,664421			15,8474	11,628	36,3%	0,3%	1	
11.3	11	3	3	11,9117	10,500654			15,1281	10,4753	44,4%	0,2%	1	
12.3	12	3	3	12,478	10,973228			15,4519	10,9318	41,3%	0,4%	1	
13.3	13	3	3	10,7471	9,4411819			12,9376	9,3929	37,7%	0,5%	1	0,4%
14.3	14	3	3	11,9431	10,529122			15,713	10,4954	49,7%	0,3%	1	
15.3	15	3	3	11,3495	10,001407			13,5312	9,0547	49,4%	9,5%	2	
16.3	16	3	3	9,726	8,5657106			9,9304	6,7671	46,7%	21,0%	4	
17.3	17	3	3	12,0549	10,639332			15,4088	10,5881	45,5%	0,5%	1	
18.3	18	3	3	11,379	10,024849			13,8119	9,9817	38,4%	0,4%	1	
19.3	19	3	3	20,2635	17,559548			21,4817	17,6059	22,0%	-0,3%	1	
20.3	20	3	3	20,458	17,653463			21,6069	17,691	22,1%	-0,2%	1	
21.3	21	3	3	20,183	17,45289			21,3247	17,4628	22,1%	-0,1%	1	
22.3	22	3		20,505				21,6938	17,7748	22,0%	-0,4%	1	
23.3	23	3		19,668				20,8386	16,9846	22,7%	-0,2%	1	-0.1%
24.3	24	3		19,94	17,225924			21,0966	17,2226	22,5%	0,0%	1	-0,170
25.3	25	3	3	18,749	16,187278			20,4334	16,2308	25,9%	-0,3%	1	
26.3	26	3		20,237				21,4533	17,5113	22,5%	-0,1%	1	
27.3	27	3		19,6605				20,9702	16,9437	23,8%	0,2%	1	
28.3	28	3		20,284				21,6612	17,5409	23,5%	0,1%	1	
29.3	29	3		17,9975				19,6288	16,1866	21,3%	-1,2%	1	
30.3	30	3		17,8425				19,4086	16,0436	21,0%	-1,8%	1	
31.3	31	3		12,6485				13,8546	11,4106	21,4%	-2,0%	1	
32.3	32	3		14,6085				15,7771	13,1505	20,0%	-2,2%	1	
33.3	33	3		15,5325				16,7441	13,9514	20,0%	-2,2%	1	-2.0%
34.3	34	3		14,878				16,1655	13,3474	21,1%	-2,2%	1	_,
35.3	35	3		16,29				17,7287	14,4047	23,1%	-1,2%	1	
36.3	36	3		14,485				15,7106	13,0264	20,6%	-2,1%	1	
37.3	37	3		14,694				15,8273	13,12	20,6%	-2,0%	1	
38,4	38	3		17,2055				18,7289	15,1137	23,9%	-0,9%	1	
39.3	39	3		19,11				22,7332	16,4814	37,9%	1,1%	1	
40.3	40	3		18,3255				19,9177	15,8709	25,5%	0,4%	1	
41.3	41	3		19,6025				21,0196	17,0797	23,1%	-0,2%	1	
42.3	42	3		18,2395	_			19,7145	15,8469	24,4%	0,0%	1	-0.1%
43.3	43	3		19,968			-	21,3953	17,4445	22,6%	-0,6%	1	-,
44.3	44	3		18,726				20,0259	16,2189	23,5%	-0,2%	1	
45.3	45	3	3	18,127	15,680652			19,622	15,634	25,5%	0,3%	1	
46,3	46	3	3	19,287	16,653197			20,7069	16,6732	24,2%	-0,1%	1	
47.3	47	3	3	16,559	14,386502			22,0398	14,279	54,4%	0,7%	1	
48.3	48	3	3	16,816	14,608668		-	21,2372	14,436	47,1%	1,2%	1	4.00/
49.3	49	3	3	19,089	16,62829		-	23,7647	16,3994	44,9%	1,4%	1	1,2%
50.2	50	3	3	17,935 17,567	15,643453 15,344664			21,5469	15,3412	40,5% 44,9%	1,9% 1,0%	1	

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 52/59

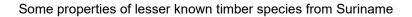
				Weight	Calculated	drymatter	ds%	Weight	Dry weight	Moisture		1	
				22 C /	Galculated	moisture	u3 /0	after 16	Dry weight	after 16			
extra code	nlank	nr	fungus	65%RH	dry weight	control		weeks	after 16 weeks	weeks	Mass loss		
exiia code	platik	111	luligus	(g)	(g)	[g]	[%]	(g)	(g)	(%)	(%)		
olus versio	olov			(9)	(9)	[9]	[70]	(9)	(9)	(70)	(70)		
1.4	OIOF 1	4	4	14.929	13.034587		-	20,462	12.9852	57.6%	0.4%	1	
2.4	2	4					-			49,2%	0,4%		
				13,086				16,9559	11,3658			1	
3.4	3	4		14,3715				19,5564	11,4536	70,7%	8,3%	2	0.70/
4.4	4	4		14,345				18,7026	10,4787	78,5%	16,0%	4	0,7%
5.4	5	4		13,143				18,264	11,4083	60,1%	0,4%	1	
6.4	6	4		14,189				18,9748	12,2413	55,0%	0,7%	1	
7.4	7	4			12,302975			18,2732	9,3041	96,4%	24,4%	4	
8.4	8	4		12,4465				18,6813	10,9461	70,7%	0,2%	1	
9.4	9	4		10,577	- 1 -			16,2694	9,2729	75,5%	0,5%	1	
10.4	10	4	4	12,5742	11,071581			16,7493	11,0234	51,9%	0,4%	1	
11.4	11	4	4	11,6986	10,312798			16,5957	10,2866	61,3%	0,3%	1	
12.4	12	4	4	12,9992	11,431575			17,7793	11,4031	55,9%	0,2%	1	
13.4	13	4	4	10,9194	9,5925452			14,5616	9,5518	52,4%	0,4%	1	0,3%
14.4	14	4	4	12,0874	10,656338			18,0736	10,6437	69,8%	0,1%	1	
15.4	15	4	4	11,5277	10,158441			16,7107	10,0809	65,8%	0,8%	1	
16.4	16	4	4	9,8336	8,6604742			14,024	8,1947	71,1%	5,4%	2	
17.4	17	4	4	12.1701				18,1532	10,7232	69.3%	0,2%	1	
18.4	18	4	4	11,3079				15,3154	9,9416	54,1%	0.2%	1	
19.4	19	4		20,106				22,8365	17,4415	30,9%	-0,1%	1	
20.4	20	4		20,364			+	22,9389	17,5875	30,4%	-0,1%	1	
21.4	21	4		20,194				22,5985	17,453	29,5%	0,1%	1	
22.4	22	4			17,462402			22,8226	17,453	30,3%	0,1%	1	
23.4	23	4		19,648			_	22,1839	16,8893	31,3%	0,1%	1	
24.4	24	4			17,404317		_	22,1639	17,3534	30,0%	0,2%	1	0,2%
		4					-					1	
25.4	25			18,9255				21,8387	16,1704	35,1%	1,0%		
26.4	26	4		20,1245	7			22,536	17,3919	29,6%	0,0%	1	
27.4	27	4		19,652				22,2555	16,8945	31,7%	0,4%	1	
28.4	28	4		20,1075				22,6614	17,3727	30,4%	0,2%	1	
29.4	29	4		18,0085				21,3158	16,2532	31,1%	-1,6%	1	
30.4	30	4		17,876				20,8773	16,0644	30,0%	-1,7%	1	
31.4	31	4	4	12,812	11,330634			16,8548	11,6363	44,8%	-2,7%	1	
32.4	32	4	4	14,6135	12,871991			17,778	13,1215	35,5%	-1,9%	1	
33.4	33	4	4	15,665	13,767957			18,0731	13,9655	29,4%	-1,4%	1	-1.6%
34.4	34	4	4	14,264	12,521456			16,7646	12,7474	31,5%	-1,8%	1	-1,070
35.4	35	4	4	16,4045	14,333217			19,0603	14,4236	32,1%	-0,6%	1	
36.4	36	4	4	14,421	12,706738			17,0261	12,9445	31,5%	-1,9%	1	
37.4	37	4	4	14,6535				17,0621	12,8837	32,4%	-0,4%	1	
38,5	38	4		16,9565			İ	19,2673	14,8861	29,4%	-0,8%	1	
39.4	39	4		19,0215				19,8745	13,7437	44,6%	17,1%	4	
40.4	40	4		18,5445				19,5564	13,7816	41,9%	14,5%	3	
41.4	41	4		19,6185				22,5932	16,6353	35,8%	2.5%	1	
42.4	42	4		18,321				22,0135	15,9028	38,4%	0,1%	1	
43.4	43	4			17,663601		+	23,1191	17,6557	30,9%	0,0%	1	0,2%
44.4	44	4	4	19.157			+	21,8867	16,5164	32.5%	0,3%	1	
45.4	45	4	4	18.111	15,666811		-		13.5286	55,4%	13,6%	3	
							-	21,0216					
46,4	46	4	4	19,3525	16,709752		-	22,618	16,6983	35,5%	0,1%	1	
47.4	47	4	4	16,5785	14,403444			24,4811	14,1413	73,1%	1,8%	1	
48.4	48	4	4	16,831	14,621699			24,0971	14,0155	71,9%	4,1%	1	
49.4	49	4	4	18,9855	16,538132			25,5453	15,7452	62,2%	4,8%	1	4,8%
50,3	50	4	4	17,5655	15,321164			23,3094	13,0324	78,9%	14,9%	3	
51.4	51	4	4	17,696	15,457344			niet gemeten	12,5584	#WAARDE!	18,8%	4	

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 53/59


				Weight	Calculated	drymatter	ds%	Weight	Dry weight	Moisture			
				22 C /	Galculated	moisture	4370	after 16	Dry weight	after 16			
extra code	nlank	nr	fungus	65%RH	dry weight	control		weeks	after 16 weeks	weeks	Mass loss		
All a Code	platik	1111	luligus	(g)	(g)		[%]	(g)	(g)	(%)	(%)		
poria exp				(9)	(9)	[g]	[70]	(g)	(9)	(70)	(70)		
1.5	1	5	5	14,7955	12,918028			19.6322	12.886	52.4%	0.2%	1	
2.5	2	5		13.387				17,3055	11.6764	48,2%	-0,2%	1	
3.5	3	5	5							51,6%	0,3%	1	
	4			14,3145				18,8162	12,4121				0,2%
4.5		5	5	14,396				17,8644	12,4742	43,2%	0,3%	1	0,2%
5.5	5	5	5	13,0645				18,3153	11,3864	60,9%	0,0%	1	
6.5	6	5	5	14,0465				16,8904	12,1755	38,7%	0,3%	1	
7.5	7	5		14,294				17,6162	12,4221	41,8%	0,2%	1	
8.5	8	5		12,635				20,0419	11,0793	80,9%	0,5%	1	
9.5	9	5		10,7482				16,9393	9,4404	79,4%	0,3%	1	
10.5	10	5	5	11,9551				16,8134	10,4825	60,4%	0,4%	1	
11.5	11	5		11,8082				18,1408	10,3677	75,0%	0,4%	1	
12.5	12	5		12,5282				18,539	10,9677	69,0%	0,5%	1	
13.5	13	5	5	10,6721				15,1782	9,2845	63,5%	1,0%	1	0,5%
14.5	14	5		12,0698	10,640822			18,5797	10,5472	76,2%	0,9%	1	
15.5	15	5	5	11,6756	10,288773			17,1339	10,2322	67,5%	0,5%	1	
16.5	16	5	5	9,8444	8,6699858			16,9502	8,3526	102,9%	3,7%	1	
17.5	17	5	5	12,161	10,732973			18,2777	10,6347	71,9%	0,9%	1	
18.5	18	5	5	11,3609	10,008903			15,7468	9,9704	57,9%	0,4%	1	
19.5	19	5	5	20,007	17,337275			22,0266	17,3907	26,7%	-0,3%	1	
20.5	20	5		20,4165				22,5215	17.627	27,8%	-0.1%	1	
21.5	21	5		20,0345				22,2502	17,3128	28,5%	0,1%	1	
22.5	22	5			17,392038			22,4608	17,4098	29,0%	-0,1%	1	
23.5	23	5	_	19,8775				22,0109	17,1403	28,4%	-0,1%	1	
24.5	24	5			17,225492			22,1103	17,2173	28,4%	0.0%	1	0,0%
25.5	25	5		18,9685				21,6353	16,3783	32,1%	0,0%	1	
26.5	26	5		20,2535				22,6485	17,5377	29,1%	-0,2%	1	
27.5	27	5		19,6815				22,2898	16,9846	31,2%	0,1%	1	
28.5	28	5		19,988				22,7015	17,3041	31,2%	0,1%	1	
							-						
29.5	29	5		18,01				20,9515	16,1801	29,5%	-1,1%	1	
30.5	30	5	5	17,927				20,3571	16,0263	27,0%	-1,2%	1	
31.5	31	5		12,919				15,2366	11,5978	31,4%	-1,5%	1	
32.5	32	5		15,065				16,9922	13,5411	25,5%	-2,0%	1	
33.5	33	5	5	16,3855				18,2294	14,7965	23,2%	-2,7%	1	-2,1%
34.5	34	5		14,137				16,2398	12,7105	27,8%	-2,4%	1	,
35.5	35	5		16,4145				18,5372	14,5703	27,2%	-1,6%	1	
36.5	36	5	5	14,101				16,6007	12,6939	30,8%	-2,2%	1	
37.5	37	5	5	14,5885	12,776342			16,5924	13,0655	27,0%	-2,3%	1	
38,6	38	5	5	16,7905	14,616999			18,6881	14,9592	24,9%	-2,3%	1	
39.5	39	5	5	18,7885	16,381939			22,6394	15,1615	49,3%	7,4%	2	
40.5	40	5	5	18,5885	16,157426			20,796	15,1867	36,9%	6,0%	2	
41.5	41	5	5	19,6265	17,060335			23,1532	16,7359	38,3%	1,9%	1	
42.5	42	5	5	18,161				21,894	15,7768	38,8%	0,0%	1	0.00/
43.5	43	5	5	20,434				23,3938	17,8714	30,9%	-0,7%	1	0,0%
44.5	44	5	5	19,0625			1	22,3662	16,5385	35,2%	-0,3%	1	
45.5	45	5	5	18,121			1	20,5162	14,921	37,5%	4,8%	1	
46.5	46	5	5	19.271	16,639382			21,9824	16.7564	31,2%	-0,7%	1	
47.5	47	5	5	16,74	14,543756			23,3384	14,3004	63,2%	1,7%	1	
48.5	48	5	5	16,838	14,62778		+	22,9824	14,2885	60,8%	2,3%	1	
49.5	49	5	5	18,9985	16,549456		+	24,8248	16.1935	53,3%	2,2%	1	1.9%
50,4	50	5	5	17,373	15,153259			21,2497	14,8688	42,9%	1,9%	1	1,070
	UU	o o	່ວ	11,3/3	15,153259			21,2497	14,8688	42,9%	1,9%	1	

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 54/59

Appendix 4 Data of Shrinkage and swelling tests

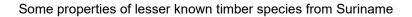

• •					•			J						
houtsoort	ingipipa													
tangential	le swelling													
									0.04					
ovendroo		70.20	0,5	70.50	al	70 . 1	0,65		0,81		0,94		waterverz	_
btan 0%	btan 30%		btan 50%		btan al	Z0-al	btan 65%		btan 81%	_	btan 94%			Z0-wv
28,718 28,662	29,348	2,193746	29,359 29,532	2,23205 3,035378	30,126 30,044		29,783 29,73	-	-	5,223205 5,229921	30,871 30,779	7,49704 7,386086		9,255519 8,851441
28,673	29,316		29,532	2,99585	30,044		29,73			5,229921	30,779			9,343285
28,65		2,198953		2,95986	30,061			-		5,082024	30,738			8,886562
28,621		2,096363	-	2,861535	29,967		29,617	-		4,908983	30,611			8,360994
28,779		2,119601	29,62	-	30,046					4,902881	30,778		31,176	
20,773	23,303	2,113001	25,02		30,010	1, 102320	25).0.	3,30233 .	30,23	1,502001	30,770	0,5 10057	51,175	0,02033
gem		2,184176		2,83449		4,747925		3,62052		5,088846		7,234652		8,837798
stdv		0,067294		0,301158		0,190976		0,106691		0,151252		0,239163		0,428672
min		2,096363		2,23205		4,402516		3,479962		4,902881		6,946037		8,32899
max		2,281767		3,035378		4,924956		3,726188		5,229921		7,49704		9,343285
radiale sw	relling													
ovendroo	0,3		0,5		al		0,65		0,81		0,94		waterverz	adigd
	brad 30%		brad 50%		brad al	Z0-al	brad 65%		brad 81%		b rad 94%		b rad wv	
28,733		1,520899	29,368	-	29,759		29,514	-		4,005847	30,375		30,647	6,66133
29,175		1,576692			30,197	3,502999				3,670951		5,014567		5,676093
28,956	-	1,657688	29,623	2,303495	30,001	-	29,774	-		3,947368	30,547	-	-	
28,886		1,544001	29,506		29,923		29,66			3,763069	30,392			-
29,012		1,537295	-	2,126706	30,039		29,768			3,619192	30,44			5,604577
29,119	29,538	1,438923	29,73	2,098286	30,059	3,228133	29,862	2,551599	30,162	3,581854	30,56	4,948659	30,769	5,666403
gem		1,545916		2,176325		3,506792		2,671592		3,764713		5,218025		6,000051
stdv		0,071542		0,073166		0,14157		0,094833		0,176021		0,323937		0,439077
min		1,438923		2,098286		3,228133		2,551599		3,581854		4,922101		5,604577
max		1,657688		2,303495		3,608924		2,824976		4,005847		5,714683		6,66133
tangential	le shrinkag	e												
	0.04		0,81		al		0,65		0,5		0.3			
waterverz btan wv		K14/1/-Q/19/	0,81 btan 81%	K14/1/_ Q10/		Kwv-al	-			Kwv-50%	0,3		ovendroog	Kwv-0%
31,341		1,231614			30,118		30,122			4,856259	29,319			
31,167		1,045978		1,790355	30,031		30,067			4,830233		6,057689		8,027722
31,325		1,430168		2,394254	30,031	4,15004	30,06			5,043895		6,601756		8,565044
31,235		1,267809		2,129022	30,083	3,68817	30,072	-	-	-	29,279			8,154314
30,999					29,962		29,979	-			29,196		-	7,680893
31,16		1,004493		1,790757	30,041		30,109		-		29,332	-		-
gem		1,163349		2,00803		3,72029		3,640648		4,631448		6,176013		8,088616
stdv		0,174612		0,264451		0,276343		0,294486		0,29395		0,317435		0,334579
min		1,000032	_	1,761347		3,345269		3,290429		4,303365		5,816317		7,680893
max		1,430168		2,394254		4,15004		4,038308		5,043895		6,601756		8,565044
radiale sh	rinkage													
waterverz	0,94		0,81		al		0,65		0,5		0,3		ovendroo	σ
	0,94 brad 94%	Kw/ν-Ω/10/				Kwv-al							brad 0%	
30,575		0,654129		1,324612		2,750613		2,541292		3,316435		4,670482		6,145544
30,796		0,034129		0,928692		2,055462		1,915833		2,649695		3,886868		5,341603
30,764		0,620856		1,231959		2,489923		2,398908		3,162788		4,459758		6,055779
30,633		0,568015		1,119708		2,210035		2,121895		2,882512		4,116476		
30,619		0,460498		0,943858		1,890983		1,874653		2,612757		3,821157		5,218982
30,745		0,400498		1,021304		2,254025		2,032851		2,012/3/		4,029924	-	
23,7.13	20,002	2, 27.072	20, .51	_,	_5,552	_,_5 .025	35,12	_,:3_031	_5,550	_, _, _, , , ,	_5,550	.,:25524	_5,0,4	2, .5555
gem		0,524223		1,095022		2,275173		2,147572		2,901939		4,164111		5,6353
stdv		0,114286		0,160014		0,307482		0,2684		0,283051		0,334238		0,383994
min		0,344201		0,928692		1,890983		1,874653		2,612757		3,821157		5,218982
		0,654129		1,324612		2,750613		2,541292		3,316435		4,670482		6,145544

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 55/59


houtsoort	Bostamari	inde												
tangential	swelling													
ovendroo	0,3		0,5		al		0,65		0,81		0,94		waterverz	adiad
	btan 30%	70-30	btan 50%		btan al	Z0-al	btan 65%		btan 81%		btan 94%	70-94		Z0-wv
28,613	29,204				29,711	3,837417	29,524			4,256806	30,24		30,377	6,16503
27,889	28,572	-	-		29,309	5,091613	29,035	-	-	5,830256	30,282	-	-	9,921474
28,233		2,107463		2,915029	29,533	4,604541	29,288			5,550243	30,598		30,989	
28,877		2,129723			30,036	4,013575	29,849			4,657686	30,662	6,18139	30,755	
28,998	29,515	1,782882	29,684	2,36568	29,993	3,431271	29,812	2,80709	30,087	3,755431	30,442	4,979654	30,58	5,455549
28,224	28,745	1,845947	29,019	2,816752	29,503	4,531604	29,245	3,617489	29,752	5,413832	30,613	8,464427	31,252	10,72846
gem		2,063417		2,812683		4,25167		3,470059		4,910709		7,044811		8,089264
stdv		0,237067		0,352095		0,60162		0,454656		0,816576		1,612674		2,292295
min		1,782882		2,36568		3,431271		2,80709		3,755431		4,979654		5,455549
max		2,448994		3,320305		5,091613		4,109147		5,830256		8,580444		10,72846
radial swe	lling													
ovendroo	0,3		0,5		al		0,65		0,81		0,94		waterverz	adigd
	brad 30%	Z0-30	brad 50%	Z0-50	brad al	Z0-al	brad 65%	Z0-65	brad 81%		b rad 94%	Z0-94		Z0-wv
29,65	29,767	0,394604	29,835	0,623946	30,016	1,234401	29,939	0,974705	30,084	1,463744	30,291		30,374	2,441821
28,779	29,092	1,087599	29,219	1,528893	29,513	2,550471	29,346	1,970187	29,598	2,845825	29,97	4,138434	30,134	4,708294
28,854	29,173	1,105566	29,324	1,62889	29,575	2,498787	29,445	2,048243	29,684	2,876551	30,037	4,099951	30,181	4,599016
29,475	29,708	0,7905	29,803	1,112807	29,978	1,706531	29,885	1,391009	30,046	1,937235	30,226	2,547922	30,256	2,649703
29,78	29,79	0,03358	29,892	0,376091	29,988	0,698455	29,955	0,587643	30,082	1,014103	30,27	1,6454	30,332	1,853593
29,163	29,394	0,7921	29,535	1,275589	29,779	2,112266	29,647	1,659637	29,868	2,417447	30,193	3,531873	30,35	4,070226
gem		0,700658		1,091036		1,800152		1,438571		2,092484		3,020911		3,387109
stdv		0,416838		0,498971		0,733629		0,573533		0,757655		1,051469		1,222285
min		0,03358		0,376091		0,698455		0,587643		1,014103		1,6454		1,853593
max		1,105566		1,62889		2,550471		2,048243		2,876551		4,138434		4,708294
tangential	shrinkage													
waterverz	0,94		0,81		al		0,65		0,5		0,3		ovendroo	g
btan wv	btan 94%	Kwv-94%	btan 81%	Kwv-81%	btan al	Kwv-al	btan 65%	Kwv-65%	btan 50%	Kwv-50%	btan 30%	Kwv-30%	btan 0%	Kwv-0%
30,411	30,285	0,414324	30,118	0,963467	29,741	2,20315	29,794	2,028871	29,588	2,706258	29,276	3,732202	28,676	5,705172
30,678	30,369	1,007236	30,028	2,118782	29,339	4,364691	29,401	4,162592	29,074	5,228503	28,631	6,672534	27,901	9,052089
31,035	30,722	1,008539	30,432	1,942968	29,643	4,485259	29,807	3,956823	29,462	5,068471	29,044	6,415338	28,272	8,902852
30,798	30,685	0,366907	30,506	0,948114	30,065	2,380025	30,179	2,009871	29,956	2,733944	29,651	3,724268	28,995	5,854276
30,603	30,473	0,424795	30,312	0,950887	29,975	2,052086	30,024	1,891971		2,519361	29,542	3,46698	29,033	5,130216
31,143	30,579	1,811001	30,197	3,037601	29,473	5,362361	29,606	4,935298	29,3	5,917863	28,863	7,321067	28,201	9,446746
gem		0,8388		1,660303		3,474595		3,164238		4,029066		5,222065		7,348559
stdv		0,561537		0,858268		1,429375		1,341778		1,535769		1,759374		1,97863
min		0,366907		0,948114		2,052086		1,891971		2,519361		3,46698		5,130216
max		1,811001		3,037601		5,362361		4,935298		5,917863		7,321067		9,446746
radial shri	nkage													
waterverz	0,94		0,81		al		0,65		0,5		0,3		ovendroo	g
			brad 81%			Kwv-al				Kwv-50%				Kwv-0%
30,394		0,250049		0,496809		1,210765		0,868592		1,187734		1,730605		2,382049
30,178	30,038	0,463914	29,894	0,941083	29,554	2,067731	29,615	1,865597	29,436	2,458745	29,175	3,323613	28,818	4,506594
30,269	30,166	0,340282	30,027	0,799498	29,682	1,939278	29,768	1,655159	29,589	2,246523	29,362	2,996465	28,968	4,298127
30,244	30,215	0,095887	30,134	0,363709	29,955	0,955561	30,029	0,710885	29,925	1,054755	29,757	1,610237	29,466	2,572411
30,387	30,298	0,292888	30,236	0,496923	29,997	1,283444	30,161	0,743739	30,076	1,023464	29,934	1,490769	29,816	1,879093
30,376	30,202	0,572821	30,075	0,990914	29,789	1,932447	29,866	1,678957	29,721	2,156308	29,481	2,946405	29,211	3,835265
gem		0,335974		0,681489		1,564871		1,253822		1,687921		2,349682		3,24559
stdv		0,166952		0,263141		0,469896		0,532813		0,66606		0,823495		1,10561
min		0,095887		0,363709		0,955561		0,710885		1,023464		1,490769		1,879093
max		0,572821		0,990914		2,067731		1,865597		2,458745		3,323613		4,506594

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 56/59

houtsoort	Gindya ud	lu												
tangentia	l swelling													
tungentiu	i sweiiiig													
ovendroo	0,3		0,5		al		0,65		0,81		0,94		waterverz	adigd
btan 0%	btan 30%	Z0-30	btan 50%	Z0-50	btan al	Z0-al	btan 65%	Z0-65	btan 81%	Z0-81	btan 94%	Z0-94	btan wv	Z0-wv
38,028	38,983	2,51	39,337	3,44	40,13	5,53	39,654	4,28	40,299	5,97	41,222	8,40	41,614	9,43
37,416	38,451	2,77	38,79	3,67	39,826	6,44	39,108	4,52	39,789	6,34	40,593	8,49	40,814	9,08
37,614	38,596	2,61	38,953	3,56	40,034	6,43	39,277	4,42	39,977	6,28	40,83	8,55	41,097	9,26
37,905	38,871	2,55	39,216	3,46	40,118	5,84	39,54	4,31	40,205	6,07	41,054	8,31	41,374	9,15
37,152	38,248	2,95	38,616	3,94	39,643	6,70	38,958	4,86	39,67	6,78	40,581	9,23	40,921	10,14
37,598	38,576	2,60	38,884	3,42	39,782	5,81	39,16	4,15	39,745	5,71	40,47	7,64	40,735	8,34
37,803	38,767	2,55	39,064	3,34	39,969	5,73	39,331	4,04	39,896	5,54	40,597	7,39	40,904	8,20
28,378	29,129	2,65	29,353	3,44	30,035	5,84	29,56	4,17	29,984	5,66	30,593	7,81	30,914	8,94
28,253	28,933	2,41	29,138	3,13	29,788	5,43	29,357	3,91	29,783	5,42	30,284	7,19	30,461	7,82
28,348	29,082	2,59	29,317	3,42	29,981	5,76	29,525	4,15	29,971	5,73	30,518	7,65	30,719	8,36
28,339	29,074	2,59	29,332	3,50	29,978	5,78	29,526	4,19	29,966	5,74	30,521	7,70	30,765	8,56
28,278	29,029	2,66	29,272	3,52	29,949	5,91	29,465	4,20	29,914	5,79	30,475	7,77	30,711	8,60
37,62	38,61	2,63	38,926	3,47	39,841	5,90	39,184	4,16	39,767	5,71	40,491	7,63	40,823	8,51
gem		2,6		3,5		5,9		4,3		5,9		8,0		8,8
stdv		0,1		0,2		0,4		0,2		0,4		0,6		0,6
min		2,4		3,1		5,4		3,9		5,4		7,2		7,8
max		3,0		3,9		6,7		4,9		6,8		9,2		10,1
	11:													
radial swe	ening													
ovendroo	0,3		0,5		al		0,65		0,81		0,94		waterverz	adigd
b rad 0%	brad 30%	Z0-30	brad 50%	Z0-50	brad al	Z0-al	brad 65%	Z0-65	brad 81%	Z0-81	b rad 94%	Z0-94	b rad wv	Z0-wv
38,451	39,212	1,979142	39,463	2,631921	40,053	4,166342	39,699	3,245689	40,139	4,390003	40,731	5,929625	40,939	6,470573
38,462			39,308		40,035	4,089751		2,776767	39,965		40,459		40,591	
38,439	39,088	1,688389	39,346	2,359583	40,068	4,237883	39,567	2,93452	40,023	4,120815	40,534	5,450194	40,66	5,777986
38,486	39,15	1,725303	39,421	2,429455	40,108	4,21452	39,665	3,063452	40,144	4,30806	40,713	5,78652	40,878	6,215247
38,126					39,946		39,386		39,869	4,571683	40,449		40,622	6,546714
38,542	39,069	1,36734	39,312	1,997821	39,914	3,559753	39,526	2,553059	39,953	3,660941	40,457	4,968606	40,638	5,438223
38,423	38,925	1,306509	39,158	1,912917	39,722	3,380788	39,354	2,423028	39,741	3,430237	40,198	4,619629	40,375	5,08029
29,03	29,423	1,353772	29,585	1,911815	29,982	3,279366	29,725	2,394075	30,004	3,35515	30,359	4,578023	30,519	5,129177
28,836	29,254	1,449577	29,439	2,091136	29,883	3,630878	29,592	2,621723	29,899	3,686364	30,243	4,879318	30,356	5,271189
28,879	29,329	1,558226	29,521	2,223069	29,99	3,847086	29,678	2,766716	30,004	3,895564	30,38	5,197548	30,511	5,651165
28,943	29,391	1,54787	29,579	2,197423	30,034	3,769478	29,736	2,739868	30,056	3,845489	30,431	5,141139	30,589	5,68704
28,651	29,114	1,615999	29,314	2,314055	29,819	4,076647	29,481	2,896932	29,82	4,080137	30,218	5,469268	30,372	6,006771
38,474	38,967			1,907782	39,772	3,373707	39,398	2,401622	39,788	3,415293	40,254	4,626501	40,44	
		1,571885		2,220385		3,876911		2,778637		3,897499		5,225497		5,686127
gem		,		,		-,		,		-		-,		-
gem stdv		0.22832		0.260607		0.432757		0.303874		0.386999		0.501072		0.501165
gem stdv min		0,22832 1,281385		0,260607 1,907782		0,432757 3,279366		0,303874 2,394075		0,386999 3,35515		0,501072 4,578023		0,501165 5,08029


Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 57/59

houtsoort	Gindya ud	lu												
noutsoort	- Ciliaya ac													
tangentia	l shrinkage													
waterverz	0,94		0,81		al		0,65		0,5		0,3		ovendroo	g
btan wv	btan 94%	Kwv-94%	btan 81%	Kwv-81%	btan al	Kwv-al	btan 65%	Kwv-65%	btan 50%	Kwv-50%	btan 30%	Kwv-30%	btan 0%	Kwv-0%
41,581	41,228	0,848945	40,884	1,676246	40,081	3,607417	40,086	3,595392	39,536	4,918112	38,782	6,73144	37,999	8,614511
40,934	40,735	0,486148	40,5	1,060243	39,909	2,504031	39,89	2,550447	39,267	4,072409	38,482	5,99013	37,806	7,641569
41,13	40,901	0,556771	40,672	1,113542	40,04	2,650134	40,007	2,730367	39,369	4,281546	38,571	6,221736	37,673	8,405057
41,47	41,157	0,754762	40,863	1,463709	40,128	3,236074	40,168	3,139619	39,613	4,477936	38,861	6,291295	38,282	7,687485
40,987	40,699	0,702662	40,399	1,434601	39,644	3,276649	39,601	3,38156	38,999	4,850318	38,197	6,807036	37,417	8,710079
40,806	40,576	0,563643	40,345	1,129736	39,795	2,477577	39,788	2,494731	39,265	3,776405	38,547	5,535951	37,876	7,180317
40,951	40,718	0,568973	40,492	1,120852	39,96	2,419965	39,966	2,405314	39,444	3,680008	38,722	5,443091	37,924	7,391761
30,956	30,724	0,749451	30,512	1,434294	30,056	2,907352	30,037	2,96873	29,644	4,238274	29,099		28,44	8,127665
30,545	30,379	0,54346	30,212	1,090195	29,831	2,337535	29,859	2,245867	29,474	3,506302	28,963	5,179244	28,415	6,973318
30,761		0,552648	30,4		30,004		29,995	2,490166	29,595				28,477	
30,827	30,645	0,590392	30,472	1,151588	30,025	2,601615	30,042	2,546469	29,65	3,818082	29,094	5,621695	28,512	7,509651
30,759	30,563	0,637212	30,394	1,186645	29,949	2,633376	29,969	2,568354	29,564	3,885042	29,002	5,712149	28,452	7,500244
40,904	40,666	0,58185	40,413		39,868	2,53276	39,832		39,299	-	38,584		37,728	
gem		0,625917		1,248891		2,741953		2,74906		4,093751		5,908128		7,763936
stdv		0,105842		0,18901		0,394		0,403129		0,439084		0,491809		0,54284
min		0,486148		1,060243		2,337535		2,245867		3,506302		5,179244		6,973318
max		0,848945		1,676246		3,607417		3,595392		4,918112		6,807036		8,710079
radial shri	inkage													
waterverz	0,94		0,81		al		0,65		0,5		0,3		ovendroo	g
b rad wv	brad 94%	Kwv-94%	brad 81%	Kwv-81%	brad al	Kwv-al	b rad 65%	Kwv-65%	brad 50%	Kwv-50%	brad 30%	Kwv-30%	brad 0%	Kwv-0%
40,896	40,736	0,391236	40,534	0,885172	40,053	2,061326	40,068	2,024648	39,693	2,941608	39,136	4,303599	38,453	5,973689
40,632	40,537	0,233806	40,395	0,583284	40,028	1,486513	40,026	1,491435	39,606	2,525103	39,04	3,918094	38,475	5,308624
40,653	40,554	0,243524	40,411	0,595282	40,056	1,468526	40,044	1,498044	39,619	2,543478	39,041	3,965267	38,415	5,505129
40,878	40,766	0,273986	40,593	0,697197	40,114	1,868976	40,133	1,822496	39,716	2,842605	39,108	4,329957	38,515	5,780615
40,632	40,507	0,307639	40,327	0,75064	39,875	1,863064	39,853	1,917208	39,432	2,953337	38,815	4,471845	38,169	6,061725
40,638	40,514	0,305133	40,338	0,738225	39,909	1,793887	39,938	1,722526	39,565	2,640386	39,028	3,961809	38,498	5,266007
40,365	-		40,076	-	39,711	-		1,563235	-	2,403072		-	38,409	-
30,52	30,41	0,360419	30,264	0,838794	29,978	1,775885	30,003	1,693971	29,76	2,49017	29,387	3,71232	29,007	4,957405
30,404		0,279568	30,197		29,912		29,928	1,565583	29,653	2,47007	29,256	3,775819	28,845	
30,496	30,399	0,318075	30,268	0,747639	29,962	1,751049	29,971		29,679	2,67904	29,254	4,072665	28,834	5,449895
30,582		-	30,335		30,023		30,044		29,766				28,925	5,41822
30,325	-	0,31657	30,083	0,798021	29,772	-	29,779		29,464		-	4,31657	28,552	-
40,438			40,134		39,765		39,766		39,418	2,52238			38,455	
	i i				·									
gem		0,311381		0,73773		1,74026		1,710938		2,655287		4,023311		5,418859
stdv		0,046231		0,086814		0,165055		0,158943		0,185515		0,264603		0,405214
min		0,233806		0,583284		1,468526		1,491435		2,403072		3,661588		4,845782

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 58/59

houtsoort	Pakoeli													
tangential	swelling													
ovendroo	0,3		0,5		al		0,65		0,81		0,94		waterverz	adiad
	btan 30%	Z0-30	btan 50%		btan al	Z0-al	btan 65%		btan 81%		btan 94%	Z0-94		Z0-wv
28,506		2,259174	29,341		29,94	5,03052	29,564			5,128745	30,563			8,226338
28,131	28,89		29,126		29,857	6,13558	29,384		-	6,359532	30,762			10,73549
28,272	29,088	2,886248	29,32	3,706848	30,055	6,306593	29,579	4,622949	30,112	6,508206	30,94	9,436899	31,371	10,96138
28,597	29,28	2,388362	29,487	3,112215	30,081	5,189356	29,691	3,825576	30,115	5,308249	30,743	7,504284	31,05	8,577823
28,479	29,093	2,155975	29,334	3,002212	29,908	5,017732	29,528	3,683416	30,075	5,604129	30,63	7,552934	31,056	9,048773
28,315	29,031	2,528695	29,24	3,26682	29,885	5,544764	29,451		-	5,502384	30,509			9,101183
28,595	29,196	2,101766	29,426	2,906102	30,027	5,007869	29,652	3,69645	30,121	5,336597	30,85	7,885994	31,29	9,424725
gem		2,431187		3,208633		5,461773		4,000866		5,678263		8,099621		9,439386
stdv		0,289686		0,311168		0,553476		0,387404		0,539286		0,909338		1,039012
min		2,101766		2,906102		5,007869		3,683416		5,128745		7,216025		8,226338
max		2,886248		3,706848		6,306593		4,622949		6,508206		9,436899		10,96138
radial swe	lling													
ovendroo	0,3		0,5		al		0,65		0,81		0,94		waterverz	adigd
b rad 0%	brad 30%	Z0-30	brad 50%	Z0-50	brad al	Z0-al	brad 65%	Z0-65	brad 81%	Z0-81	b rad 94%	Z0-94		Z0-wv
29,229	29,619	1,334291	29,752	1,789319	30,109	3,010709	29,875	2,210134	30,102	2,98676	30,425	4,091827	30,558	4,546854
29,171	29,508	1,155257	29,637	1,597477	30,074	3,09554	29,778	2,080834	30,037	-	30,415	4,264509	-	4,836996
29,111	29,534		29,671		30,072	3,301158	29,802					4,489712		5,025592
29,072	29,481		29,619		29,981	3,12672	29,742				30,319	4,289351	30,471	4,81219
28,9		1,435986	29,461		29,863	3,33218	29,596		-	3,307958	30,234		30,439	5,32526
28,939		1,461695	29,51		29,925	3,407167	29,643		-	3,338056	30,275		30,46	
29,218	29,538	1,095215	29,672	1,553837	30,004	2,690123	29,786	1,944007	30,018	2,738038	30,352	3,881169	30,517	4,44589
gem		1,334622		1,80859		3,137656		2,250611		3,103249		4,321299		4,892666
stdv		0,150086		0,169829		0,243414		0,182827		0,217731		0,274769		0,333042
min		1,095215		1,553837		2,690123		1,944007		2,738038		3,881169		4,44589
max		1,461695		1,973116		3,407167		2,432703		3,338056		4,616607		5,32526
tangential	shrinkage													
waterverz	0,94		0,81		al		0,65		0,5		0,3		ovendroo	g
		Kwv-94%	btan 81%	Kwv-81%		Kwv-al				Kwv-50%		Kwv-30%		Kwv-0%
30,799	30,713	0,27923	30,487	1,01302	29,964	2,711127	29,988				29,179			7,013215
31,016	30,896	0,386897	30,572	1,431519	29,884	3,649729	29,887	3,640057	29,449	5,052231	28,895	6,838406	28,371	8,527857
31,241	31,084	0,502545	30,774	1,494831	30,086	3,697065	30,082	3,709868	29,64	5,124676	29,066	6,962005	28,559	8,584872
30,942	30,841	0,326417	30,603	1,095598	30,059	2,853726	30,099	2,724452	29,718	3,955788	29,208	5,604033	28,692	7,27167
31,034	30,779	0,821679	30,522	1,649803	29,922	3,583167	29,968	3,434942	29,579	4,688406	29,088	6,270542	28,545	8,020236
30,912	30,681		30,453	1,48486	29,908	3,24793	29,924			4,473991	29,019		28,487	7,84485
31,143	30,947	0,629355	30,638	1,621552	30,006	3,650901	30,061	3,474296	29,678	4,704107	29,172	6,32887	28,715	7,796295
gem		0,527629		1,398741		3,341949		3,258998		4,545358		6,198229		7,865571
stdv		0,21122		0,248689		0,412232		0,429555		0,503237		0,612987		0,586571
min		0,27923		1,01302		2,711127		2,633202		3,818306		5,259911		7,013215
max		0,821679		1,649803		3,697065		3,709868		5,124676		6,962005		8,584872
radial shrii	nkage													
waterverz	0,94		0,81		al		0,65		0,5		0,3		ovendroog	g
b rad wv	brad 94%	Kwv-94%	brad 81%	Kwv-81%	brad al	Kwv-al	b rad 65%	Kwv-65%	brad 50%	Kwv-50%	brad 30%	Kwv-30%	brad 0%	Kwv-0%
30,509	30,467	0,137664	30,353	0,511325	30,087	1,383198	30,103	1,330755	29,886	2,04202	29,573	3,067947	29,178	4,362647
30,469	30,459			0,472612	30,037			1,375168		2,126752		3,183564		4,52263
30,479		0,006562		0,423242	30,061	-				2,073559		3,143148		4,50146
30,389		0,111883		0,503472	29,963					2,059956		3,126131		4,340386
30,427		0,371381		0,828212		1,847044		1,787886	-	2,576659		3,664508		4,78851
30,438		0,315395		0,712925	29,929					2,421315		3,541626		
30,433	30,403	0,098577	30,278	0,509316	30,014	1,376795	30,03	1,32422	29,82	2,014261	29,528	2,973746	29,155	4,199389
gem		0,153469		0,565872		1,495769		1,43946		2,187789		3,242953		4,481484
stdv		0,138345		0,146944		0,18785		0,187111		0,219936		0,257277		0,200083
min		0,006562		0,423242		1,371436		1,318941		2,014261		2,973746		4,199389
max		0,371381		0,828212		1,847044		1,787886		2,576659		3,664508		4,78851

Report code: 17.0431-revised 2 Date: October 22nd, 2019 Page: 59/59

houtsoort	Kimboto													
tangential	swelling													
ovendroo	0,3		0,5		al		0,65		0,81		0,94		waterverz	adiad
	btan 30%	Z0-30	btan 50%	Z0-50		Z0-al	btan 65%	Z0-65	btan 81%		btan 94%	Z0-94		Z0-wv
28,272	29,111	2,9676			30,075					7,123656	31,322		32,51	14,9901
28,179	28,973	-	29,268	3,86458	29,924		29,543	-	30,141	-	31,182	-	32,096	13,90042
28,169	29,014	2,999751	29,352	4,199652	29,961	6,361603	29,632	5,193653	30,285	7,511804	31,387	11,42391	32,135	14,07931
28,132	28,967	2,96815	29,269	4,041661	29,825	6,018058	29,537	4,994313	30,165	7,226646	31,269	11,151	31,847	13,2056
28,133	29,05	3,259517	29,317	4,208581	29,909	6,312871	29,591	5,182526	30,18	7,276153	31,117	10,60676	31,495	11,95038
gem		3,002544		4,060857		6,252484		5,041063		7,220178		10,92532		13,62516
stdv		0,160167		0,145797		0,14974		0,148236		0,202403		0,35068		1,132033
min		2,817701		3,86458		6,018058		4,840484		6,962632		10,60676		11,95038
max		3,259517		4,208581		6,377334		5,193653		7,511804		11,42391		14,9901
radial swe	lling													
ovendroo	0,3		0,5		al		0,65		0,81		0,94		waterverz	adiød
	brad 30%	70-30	brad 50%	70-50	brad al	Z0-al	brad 65%	70-65	brad 81%		b rad 94%	70-94		Z0-wv
29,051	29,456	1.3941	29,637			3,273553		2,533476			30,54			5,899969
29,155	29,583	,		2,064826	-	3,261876		2,548448		3,491682	30,564	4,83279	30,76	
28,859	29,465		29,681	2,848332	30,127	4,393777	29,879	-		4,892754	30,858	-	31,115	7,817319
28,732	29,358		29,566	-	29,955						30,617		30,841	7,340248
28,796	29,366		29,556	-	29,922		29,711				30,486		30,636	
gem		1,824036		2,494448		3,81921		3.063912		4,200775		5.862908		6,590474
gem stdv		0,366624		0,42581		0,533402		0,498646		0,642885		0,897724		0,96986
min		1,3941		2,017142		3,261876		2,533476		3,491682		4,83279		5,505059
max		2,178755		2,902687		4,393777		3,534426		4,892754		6,926782		7,817319
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		.,,
tangential	shrinkage													
waterverz	0,94		0,81		al		0,65		0,5		0,3		ovendroo	g
	-	Kwv-94%	btan 81%	Kwv-81%		Kwv-al	-	Kwv-65%			btan 30%	Kwv-30%		Kwv-0%
32,286	31,414		30,888	4,33005	30,081	6,829586		6,863656			29,097		28,292	
32,115	31,289		30,774		29,932	6,797447	29,976					9,683948	28,21	12,15943
32,048	31,394		30,802		29,907	6,680604			29,535			9,579381	28,335	
31,973	31,393	1,814031	30,829	3,578019	29,876	6,558659	30,024		29,619		29,114	8,94192	28,35	11,33144
31,495	31,144	1,114463	30,709	2,495634	29,906	5,045245	29,952	4,89919	29,57	6,112081	29,082	7,661534	28,329	10,05239
gem		2,04841		3,693448		6,382308		6,20748		7,481039		9,148826		11,49994
stdv		0,637789		0,728638		0,755019		0,783658		0,817394		0,902403		0,911631
min		1,114463		2,495634		5,045245		4,89919		6,112081		7,661534		10,05239
max		2,700861		4,33005		6,829586		6,863656		8,142848		9,877346		12,37069
radial shri	nkage													
waterverz			0,81		al		0,65		0,5		0,3		ovendroo	
			brad 81%			Kwv-al					brad 30%			Kwv-0%
30,758		0,643735		1,329735		2,457897		2,376617				4,161519		5,608297
30,785		0,555465		1,198636				2,192626				3,917492		
31,076		0,640366		1,522075		2,992663		3,002317		3,948385		5,238769	28,829	7,23066
30,845		0,583563		1,468633 1,054969	-	2,794618	-			-		4,817637	28,707	
30,617	30,559	0,189437	30,294	1,054969	29,917	2,286312	29,929	2,247118	29,699	2,998334	29,363	4,095764	28,776	6,012999
gem		0,522513		1,31481		2,539626		2,52655		3,311479		4,446236		6,214336
stdv		0,189958		0,192261		0,346493		0,360933		0,463599		0,558908		0,838529
min		0,189437		1,054969		2,16664		2,192626		2,86828		3,917492		5,28829
max		0,643735		1,522075		2,992663		3,002317		3,948385		5,238769		7,23066